Refine search
Results (34 matches)
Download displayed columns for resultsElements of the group are displayed as permutations of degree 16.
Group | Label | Order | Size | Centralizer | Powers | Representative |
---|---|---|---|---|---|---|
2P | ||||||
$C_2^4.C_2\wr C_4$ | 1A | $1$ | $1$ | $C_2^4.C_2\wr C_4$ | 1A | $()$ |
$C_2^4.C_2\wr C_4$ | 2A | $2$ | $1$ | $C_2^4.C_2\wr C_4$ | 1A | $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 2B | $2$ | $2$ | $C_2^6:D_4$ | 1A | $(9,10)(11,12)(13,14)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 2C | $2$ | $4$ | $C_2^6:C_2^2$ | 1A | $(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 2D | $2$ | $4$ | $C_2^6:C_2^2$ | 1A | $(5,6)(7,8)$ |
$C_2^4.C_2\wr C_4$ | 2E | $2$ | $4$ | $C_2^6:C_2^2$ | 1A | $(5,6)(7,8)(13,14)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 2F | $2$ | $8$ | $C_2^3\wr C_2$ | 1A | $(1,4)(2,3)(5,7)(6,8)(9,10)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 2G | $2$ | $8$ | $C_2^3\wr C_2$ | 1A | $(1,4)(2,3)(5,8)(6,7)(9,10)(13,14)$ |
$C_2^4.C_2\wr C_4$ | 2H | $2$ | $16$ | $C_2^6$ | 1A | $(7,8)(9,11)(10,12)$ |
$C_2^4.C_2\wr C_4$ | 2I | $2$ | $16$ | $C_2^6$ | 1A | $(7,8)(9,11)(10,12)(13,14)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 2J | $2$ | $16$ | $C_2^6$ | 1A | $(5,7)(6,8)(9,10)(11,12)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 2K | $2$ | $16$ | $C_2^6$ | 1A | $(3,4)(7,8)(9,11)(10,12)(13,15)(14,16)$ |
$C_2^4.C_2\wr C_4$ | 2L | $2$ | $16$ | $C_2^6$ | 1A | $(3,4)(5,6)(7,8)(9,10)(11,12)(13,15)(14,16)$ |
$C_2^4.C_2\wr C_4$ | 2M | $2$ | $16$ | $C_2^3.D_4$ | 1A | $(1,6)(2,5)(3,7)(4,8)(9,15)(10,16)(11,14)(12,13)$ |
$C_2^4.C_2\wr C_4$ | 4A | $4$ | $8$ | $(C_2^3\times C_4):C_4$ | 2A | $(1,3,2,4)(5,7,6,8)(9,11,10,12)(13,16,14,15)$ |
$C_2^4.C_2\wr C_4$ | 4B | $4$ | $8$ | $C_2^4.C_8$ | 2A | $(1,3,2,4)(5,8,6,7)(9,11,10,12)(13,16,14,15)$ |
$C_2^4.C_2\wr C_4$ | 4C | $4$ | $16$ | $C_4^2:C_2^2$ | 2A | $(1,7,2,8)(3,6,4,5)(9,16,10,15)(11,14,12,13)$ |
$C_2^4.C_2\wr C_4$ | 4D | $4$ | $32$ | $C_2^3\times C_4$ | 2D | $(5,7,6,8)(9,11)(10,12)(15,16)$ |
$C_2^4.C_2\wr C_4$ | 4E | $4$ | $32$ | $C_2^3\times C_4$ | 2D | $(3,4)(5,7)(6,8)(9,10)(11,12)(13,15,14,16)$ |
$C_2^4.C_2\wr C_4$ | 4F | $4$ | $32$ | $C_2^3\times C_4$ | 2E | $(3,4)(5,7,6,8)(9,11)(10,12)(13,15,14,16)$ |
$C_2^4.C_2\wr C_4$ | 4G | $4$ | $32$ | $C_2^3\times C_4$ | 2E | $(3,4)(5,7,6,8)(9,12)(10,11)(13,15,14,16)$ |
$C_2^4.C_2\wr C_4$ | 4H | $4$ | $32$ | $C_4\times D_4$ | 2B | $(1,5)(2,6)(3,7)(4,8)(9,13,10,14)(11,16,12,15)$ |
$C_2^4.C_2\wr C_4$ | 4I | $4$ | $64$ | $C_2^2\times C_4$ | 2F | $(1,6,4,8)(2,5,3,7)(9,15,10,16)(11,14)(12,13)$ |
$C_2^4.C_2\wr C_4$ | 4J | $4$ | $64$ | $C_2^2\times C_4$ | 2G | $(1,8,4,5)(2,7,3,6)(9,13,10,14)(11,15)(12,16)$ |
$C_2^4.C_2\wr C_4$ | 4K1 | $4$ | $64$ | $C_4^2$ | 2M | $(1,12,6,13)(2,11,5,14)(3,10,7,16)(4,9,8,15)$ |
$C_2^4.C_2\wr C_4$ | 4K-1 | $4$ | $64$ | $C_4^2$ | 2M | $(1,13,6,12)(2,14,5,11)(3,16,7,10)(4,15,8,9)$ |
$C_2^4.C_2\wr C_4$ | 8A1 | $8$ | $32$ | $\OD_{32}$ | 4B | $(1,6,3,7,2,5,4,8)(9,13,11,16,10,14,12,15)$ |
$C_2^4.C_2\wr C_4$ | 8A-1 | $8$ | $32$ | $\OD_{32}$ | 4B | $(1,8,4,5,2,7,3,6)(9,15,12,14,10,16,11,13)$ |
$C_2^4.C_2\wr C_4$ | 8B1 | $8$ | $64$ | $C_2\times C_8$ | 4C | $(1,14,7,12,2,13,8,11)(3,16,6,10,4,15,5,9)$ |
$C_2^4.C_2\wr C_4$ | 8B-1 | $8$ | $64$ | $C_2\times C_8$ | 4C | $(1,11,8,13,2,12,7,14)(3,9,5,15,4,10,6,16)$ |
$C_2^4.C_2\wr C_4$ | 16A1 | $16$ | $64$ | $C_{16}$ | 8A1 | $(1,14,6,12,3,15,7,9,2,13,5,11,4,16,8,10)$ |
$C_2^4.C_2\wr C_4$ | 16A-1 | $16$ | $64$ | $C_{16}$ | 8A-1 | $(1,10,8,16,4,11,5,13,2,9,7,15,3,12,6,14)$ |
$C_2^4.C_2\wr C_4$ | 16A3 | $16$ | $64$ | $C_{16}$ | 8A-1 | $(1,12,7,13,4,10,6,15,2,11,8,14,3,9,5,16)$ |
$C_2^4.C_2\wr C_4$ | 16A-3 | $16$ | $64$ | $C_{16}$ | 8A1 | $(1,16,5,9,3,14,8,11,2,15,6,10,4,13,7,12)$ |