Properties

Label 1024.dhh.8.m1
Order $ 2^{7} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4.C_8$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\langle(1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,14,15), (1,7,4,5,2,8,3,6)(9,13,12,16,10,14,11,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^4.C_2\wr C_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.C_2\wr C_2^2$, of order \(8192\)\(\medspace = 2^{13} \)
$\operatorname{Aut}(H)$ $D_4^2:C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\wr C_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_2^4.\OD_{16}$
Normal closure:$(C_2^2\times D_4).\OD_{16}$
Core:$C_2^3\times C_4$
Minimal over-subgroups:$C_2^4.\OD_{16}$
Maximal under-subgroups:$C_2^2:\OD_{16}$$\OD_{32}:C_2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^5.D_8$