Refine search
Results (37 matches)
Download displayed columns for resultsElements of the group are displayed as permutations of degree 16.
Group | Label | Order | Size | Centralizer | Powers | Representative |
---|---|---|---|---|---|---|
2P | ||||||
$C_2^6.\OD_{16}$ | 1A | $1$ | $1$ | $C_2^6.\OD_{16}$ | 1A | $()$ |
$C_2^6.\OD_{16}$ | 2A | $2$ | $1$ | $C_2^6.\OD_{16}$ | 1A | $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)$ |
$C_2^6.\OD_{16}$ | 2B | $2$ | $2$ | $(C_2^3\times D_4).C_2^3$ | 1A | $(9,10)(11,12)(13,14)(15,16)$ |
$C_2^6.\OD_{16}$ | 2C | $2$ | $4$ | $C_2^2.D_4^2$ | 1A | $(3,4)(7,8)(11,12)(15,16)$ |
$C_2^6.\OD_{16}$ | 2D | $2$ | $4$ | $C_2^2.D_4^2$ | 1A | $(3,4)(7,8)(9,10)(11,12)(13,14)(15,16)$ |
$C_2^6.\OD_{16}$ | 2E | $2$ | $4$ | $C_2^2.D_4^2$ | 1A | $(11,12)(15,16)$ |
$C_2^6.\OD_{16}$ | 2F | $2$ | $8$ | $C_2^5:C_4$ | 1A | $(13,14)(15,16)$ |
$C_2^6.\OD_{16}$ | 2G | $2$ | $8$ | $C_2^5:C_4$ | 1A | $(5,6)(7,8)(11,12)(15,16)$ |
$C_2^6.\OD_{16}$ | 2H | $2$ | $8$ | $C_2^5:C_4$ | 1A | $(5,6)(7,8)(9,10)(13,14)$ |
$C_2^6.\OD_{16}$ | 2I | $2$ | $8$ | $C_2^5:C_4$ | 1A | $(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)$ |
$C_2^6.\OD_{16}$ | 2J | $2$ | $16$ | $C_2^6$ | 1A | $(5,6)(7,8)(13,14)(15,16)$ |
$C_2^6.\OD_{16}$ | 2K | $2$ | $16$ | $C_2^4:C_4$ | 1A | $(1,5)(2,6)(3,8)(4,7)(9,14)(10,13)(11,16)(12,15)$ |
$C_2^6.\OD_{16}$ | 4A | $4$ | $8$ | $C_2^4.C_8$ | 2A | $(1,5,2,6)(3,8,4,7)(9,14,10,13)(11,16,12,15)$ |
$C_2^6.\OD_{16}$ | 4B | $4$ | $8$ | $C_2^4.C_8$ | 2A | $(1,5,2,6)(3,8,4,7)(9,13,10,14)(11,16,12,15)$ |
$C_2^6.\OD_{16}$ | 4C1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(7,8)(9,13)(10,14)(11,15,12,16)$ |
$C_2^6.\OD_{16}$ | 4C-1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(7,8)(9,13)(10,14)(11,16,12,15)$ |
$C_2^6.\OD_{16}$ | 4D1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(7,8)(9,13,10,14)(11,15)(12,16)$ |
$C_2^6.\OD_{16}$ | 4D-1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(7,8)(9,13,10,14)(11,16)(12,15)$ |
$C_2^6.\OD_{16}$ | 4E1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(3,4)(5,6)(7,8)(9,13)(10,14)(11,15,12,16)$ |
$C_2^6.\OD_{16}$ | 4E-1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(3,4)(5,6)(7,8)(9,13)(10,14)(11,16,12,15)$ |
$C_2^6.\OD_{16}$ | 4F1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(3,4)(5,6)(7,8)(9,13,10,14)(11,15)(12,16)$ |
$C_2^6.\OD_{16}$ | 4F-1 | $4$ | $16$ | $C_2^4\times C_4$ | 2E | $(3,4)(5,6)(7,8)(9,13,10,14)(11,16)(12,15)$ |
$C_2^6.\OD_{16}$ | 4G | $4$ | $32$ | $C_2^3\times C_4$ | 2B | $(1,5)(2,6)(3,7)(4,8)(9,13,10,14)(11,15,12,16)$ |
$C_2^6.\OD_{16}$ | 4H1 | $4$ | $64$ | $C_2^2\times C_4$ | 2K | $(1,8,5,3)(2,7,6,4)(9,11,14,16)(10,12,13,15)$ |
$C_2^6.\OD_{16}$ | 4H-1 | $4$ | $64$ | $C_2^2\times C_4$ | 2K | $(1,3,5,8)(2,4,6,7)(9,16,14,11)(10,15,13,12)$ |
$C_2^6.\OD_{16}$ | 8A1 | $8$ | $32$ | $\OD_{32}$ | 4A | $(1,8,5,4,2,7,6,3)(9,15,14,11,10,16,13,12)$ |
$C_2^6.\OD_{16}$ | 8A-1 | $8$ | $32$ | $\OD_{32}$ | 4A | $(1,3,6,7,2,4,5,8)(9,12,13,16,10,11,14,15)$ |
$C_2^6.\OD_{16}$ | 8B1 | $8$ | $32$ | $\OD_{32}$ | 4B | $(1,4,5,7,2,3,6,8)(9,12,13,15,10,11,14,16)$ |
$C_2^6.\OD_{16}$ | 8B-1 | $8$ | $32$ | $\OD_{32}$ | 4B | $(1,8,6,3,2,7,5,4)(9,16,14,11,10,15,13,12)$ |
$C_2^6.\OD_{16}$ | 16A1 | $16$ | $64$ | $C_{16}$ | 8A1 | $(1,16,8,13,5,12,4,9,2,15,7,14,6,11,3,10)$ |
$C_2^6.\OD_{16}$ | 16A-1 | $16$ | $64$ | $C_{16}$ | 8A-1 | $(1,10,3,11,6,14,7,15,2,9,4,12,5,13,8,16)$ |
$C_2^6.\OD_{16}$ | 16A3 | $16$ | $64$ | $C_{16}$ | 8A-1 | $(1,13,4,15,6,10,8,12,2,14,3,16,5,9,7,11)$ |
$C_2^6.\OD_{16}$ | 16A-3 | $16$ | $64$ | $C_{16}$ | 8A1 | $(1,11,7,9,5,16,3,14,2,12,8,10,6,15,4,13)$ |
$C_2^6.\OD_{16}$ | 16B1 | $16$ | $64$ | $C_{16}$ | 8B1 | $(1,12,4,13,5,15,7,10,2,11,3,14,6,16,8,9)$ |
$C_2^6.\OD_{16}$ | 16B-1 | $16$ | $64$ | $C_{16}$ | 8B-1 | $(1,9,8,16,6,14,3,11,2,10,7,15,5,13,4,12)$ |
$C_2^6.\OD_{16}$ | 16B3 | $16$ | $64$ | $C_{16}$ | 8B-1 | $(1,13,7,11,6,9,4,15,2,14,8,12,5,10,3,16)$ |
$C_2^6.\OD_{16}$ | 16B-3 | $16$ | $64$ | $C_{16}$ | 8B1 | $(1,16,3,10,5,12,8,14,2,15,4,9,6,11,7,13)$ |