Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Subgroup Ambient Quotient
Name Order Sylow norm char max cent ab Name Order Name Size max ab
672.421.1.a1.a1 $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_1$ $1$
672.421.2.a1.a1 $D_{28}:S_3$ $2^{4} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2$ $2$
672.421.2.a1.b1 $D_{28}:S_3$ $2^{4} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2$ $2$
672.421.2.b1.a1 $C_{21}:\SD_{16}$ $2^{4} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2$ $2$
672.421.2.b1.b1 $C_{21}:\SD_{16}$ $2^{4} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2$ $2$
672.421.2.c1.a1 $C_3\times D_{56}$ $2^{4} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2$ $2$
672.421.2.d1.a1 $C_8\times D_{21}$ $2^{4} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2$ $2$
672.421.2.e1.a1 $C_{21}:Q_{16}$ $2^{4} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2$ $2$
672.421.4.a1.a1 $C_3\times D_{28}$ $2^{3} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^2$ $2^{2}$
672.421.4.a1.b1 $C_3\times D_{28}$ $2^{3} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^2$ $2^{2}$
672.421.4.b1.a1 $C_4\times D_{21}$ $2^{3} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^2$ $2^{2}$
672.421.4.c1.a1 $C_{21}:Q_8$ $2^{3} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^2$ $2^{2}$
672.421.4.c1.b1 $C_{21}:Q_8$ $2^{3} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^2$ $2^{2}$
672.421.4.d1.a1 $C_{168}$ $2^{3} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^2$ $2^{2}$
672.421.4.e1.a1 $C_{21}:C_8$ $2^{3} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^2$ $2^{2}$
672.421.6.a1.a1 $D_{56}$ $2^{4} \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $S_3$ $2 \cdot 3$
672.421.8.a1.a1 $D_{42}$ $2^{2} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_4$ $2^{3}$
672.421.8.b1.a1 $C_{84}$ $2^{2} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2^3$ $2^{3}$
672.421.8.c1.a1 $C_{21}:C_4$ $2^{2} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_4$ $2^{3}$
672.421.12.a1.a1 $D_{28}$ $2^{3} \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_6$ $2^{2} \cdot 3$
672.421.12.a1.b1 $D_{28}$ $2^{3} \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_6$ $2^{2} \cdot 3$
672.421.12.b1.a1 $C_{56}$ $2^{3} \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_6$ $2^{2} \cdot 3$
672.421.14.a1.a1 $C_3:Q_{16}$ $2^{4} \cdot 3$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_7$ $2 \cdot 7$
672.421.16.a1.a1 $C_{42}$ $2 \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2\times D_4$ $2^{4}$
672.421.24.a1.a1 $C_{28}$ $2^{2} \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2\times D_6$ $2^{3} \cdot 3$
672.421.28.a1.a1 $C_3:Q_8$ $2^{3} \cdot 3$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_{14}$ $2^{2} \cdot 7$
672.421.28.a1.b1 $C_3:Q_8$ $2^{3} \cdot 3$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_{14}$ $2^{2} \cdot 7$
672.421.28.b1.a1 $C_{24}$ $2^{3} \cdot 3$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_{14}$ $2^{2} \cdot 7$
672.421.32.a1.a1 $C_{21}$ $3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_8:C_2$ $2^{5}$
672.421.48.a1.a1 $C_{14}$ $2 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $S_3\times D_4$ $2^{4} \cdot 3$
672.421.56.a1.a1 $C_{12}$ $2^{2} \cdot 3$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_2\times D_{14}$ $2^{3} \cdot 7$
672.421.84.a1.a1 $C_8$ $2^{3}$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $S_3\times D_7$ $2^{2} \cdot 3 \cdot 7$
672.421.96.a1.a1 $C_7$ $7$ $7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_8:S_3$ $2^{5} \cdot 3$
672.421.112.a1.a1 $C_6$ $2 \cdot 3$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_4\times D_7$ $2^{4} \cdot 7$
672.421.168.a1.a1 $C_4$ $2^{2}$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $S_3\times D_{14}$ $2^{3} \cdot 3 \cdot 7$
672.421.224.a1.a1 $C_3$ $3$ $3$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_{56}:C_2$ $2^{5} \cdot 7$
672.421.336.a1.a1 $C_2$ $2$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $C_{12}:D_{14}$ $2^{4} \cdot 3 \cdot 7$
672.421.672.a1.a1 $C_1$ $1$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$ $D_{56}:S_3$ $2^{5} \cdot 3 \cdot 7$
  displayed columns for results