Properties

Label 672.421.4.a1.a1
Order $ 2^{3} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{28}$
Order: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ac^{9}, c^{56}, c^{84}, c^{42}, c^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{56}:S_3$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{84}.(C_2^5\times C_6)$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_4\times D_7$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_{56}:S_3$
Minimal over-subgroups:$D_{28}:S_3$$C_{21}:\SD_{16}$$C_3\times D_{56}$
Maximal under-subgroups:$C_{84}$$C_3\times D_{14}$$D_{28}$$C_3\times D_4$
Autjugate subgroups:672.421.4.a1.b1

Other information

Möbius function$2$
Projective image$C_{12}:D_{14}$