Refine search
| Label | Subgroup | Ambient | Quotient | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Name | Order | Sylow | norm | char | max | cent | ab | Name | Order | Name | Size | max | ab | |||
| 2560.i.1.a1 | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | ✓ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $C_1$ | $1$ | ✓ | |||||||
| 2560.i.2.a1 | $C_4^4:C_5$ | $2^{8} \cdot 5$ | ✓ | ✓ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $C_2$ | $2$ | ✓ | ||||||
| 2560.i.5.a1 | $C_2\times C_4^4$ | $2^{9}$ | $2$ | ✓ | ✓ | ✓ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $C_5$ | $5$ | ✓ | ||||
| 2560.i.10.a1 | $C_4^4$ | $2^{8}$ | ✓ | ✓ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $C_{10}$ | $2 \cdot 5$ | ✓ | ||||||
| 2560.i.10.b1 | $C_2^2\times C_4^3$ | $2^{8}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2 \cdot 5$ | $-$ | |||||||||
| 2560.i.10.c1 | $C_4^4$ | $2^{8}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2 \cdot 5$ | $-$ | |||||||||
| 2560.i.16.a1 | $C_2\wr C_5$ | $2^{5} \cdot 5$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4}$ | $-$ | |||||||||
| 2560.i.20.a1 | $C_2\times C_4^3$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.20.b1 | $C_2^3\times C_4^2$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.20.b2 | $C_2^3\times C_4^2$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.20.c1 | $C_2\times C_4^3$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.20.d1 | $C_2\times C_4^3$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.20.d2 | $C_2\times C_4^3$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.20.d3 | $C_2\times C_4^3$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.20.e1 | $C_2\times C_4^3$ | $2^{7}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{2} \cdot 5$ | $-$ | |||||||||
| 2560.i.32.a1 | $C_2^4:C_5$ | $2^{4} \cdot 5$ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{5}$ | $-$ | ||||||||||
| 2560.i.40.a1 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.a2 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.a3 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.b1 | $C_2^4\times C_4$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.c1 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.c2 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.c3 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.d1 | $C_4^3$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.d2 | $C_4^3$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.d3 | $C_4^3$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.e1 | $C_4^3$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.f1 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.f2 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.f3 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.g1 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.40.g2 | $C_2^2\times C_4^2$ | $2^{6}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{3} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.a1 | $C_2^5$ | $2^{5}$ | ✓ | ✓ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $C_2^4:C_5$ | $2^{4} \cdot 5$ | |||||||
| 2560.i.80.b1 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.b2 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.b3 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.b4 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.c1 | $C_2^3\times C_4$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.c2 | $C_2^3\times C_4$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.c3 | $C_2^3\times C_4$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.d1 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.d2 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.d3 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.d4 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.d5 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.d6 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.d7 | $C_2\times C_4^2$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.e1 | $C_2^3\times C_4$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.e2 | $C_2^3\times C_4$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||
| 2560.i.80.e3 | $C_2^3\times C_4$ | $2^{5}$ | ✓ | $C_4^4:C_{10}$ | $2^{9} \cdot 5$ | $2^{4} \cdot 5$ | $-$ | |||||||||