Properties

Label 2560.i.40.f1
Order $ 2^{6} $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{5}bcd^{3}, b^{2}c^{3}e^{3}, d^{2}e^{2}, e^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_4^4:C_{10}$
Order: \(2560\)\(\medspace = 2^{9} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.F_{16}:C_4$, of order \(245760\)\(\medspace = 2^{14} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^8.\POPlus(4,3)$, of order \(147456\)\(\medspace = 2^{14} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4^4$
Normalizer:$C_2\times C_4^4$
Normal closure:$C_2\times C_4^4$
Core:$C_2^4$
Minimal over-subgroups:$C_2^3\times C_4^2$$C_2\times C_4^3$$C_2\times C_4^3$$C_2\times C_4^3$
Maximal under-subgroups:$C_2\times C_4^2$$C_2\times C_4^2$$C_2\times C_4^2$$C_2^3\times C_4$$C_2^3\times C_4$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$C_4^4:C_{10}$