Properties

Label 9961472.a
Order \( 2^{19} \cdot 19 \)
Exponent \( 2 \cdot 19 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 19 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{5} \cdot 7 \cdot 19 \cdot 73 \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3^{5} \cdot 7 \cdot 73 \)
Perm deg. $38$
Trans deg. $38$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 38 | (1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9), (1,17,34,11,28,5,22,37,15,31,10,25,3,19,36,14,30,8,23,2,18,33,12,27,6,21,38,16,32,9,26,4,20,35,13,29,7,24) >;
 
Copy content gap:G := Group( (1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9), (1,17,34,11,28,5,22,37,15,31,10,25,3,19,36,14,30,8,23,2,18,33,12,27,6,21,38,16,32,9,26,4,20,35,13,29,7,24) );
 
Copy content sage:G = PermutationGroup(['(1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9)', '(1,17,34,11,28,5,22,37,15,31,10,25,3,19,36,14,30,8,23,2,18,33,12,27,6,21,38,16,32,9,26,4,20,35,13,29,7,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(575051273358734709361081479545231183210109151901416839177166991464940394250879103589024882202061713474051017053367889812230747544159518233958646282309145864637825594242512892855379440897044937390481124456347946638516010361032485413994619136101739863440205403022140547635983792795805500379105175872435295835023231149288425636218470928743661568,9961472)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14; n = G.15; o = G.16; p = G.17; q = G.18; r = G.19; s = G.20;
 

Group information

Description:$C_2^{18}.C_{38}$
Order: \(9961472\)\(\medspace = 2^{19} \cdot 19 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(38\)\(\medspace = 2 \cdot 19 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1236945862656\)\(\medspace = 2^{19} \cdot 3^{5} \cdot 7 \cdot 19 \cdot 73 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 19, $C_{19}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metabelian (hence solvable), and an A-group. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 19 38
Elements 1 524287 4718592 4718592 9961472
Conjugacy classes   1 27595 18 18 27632
Divisions 1 27595 1 1 27598

Minimal presentations

Permutation degree:$38$
Transitive degree:$38$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid a^{38}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, -2, -19, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 40, 345059762, 110602, 467515523, 168743, 787512004, 5618324, 373687445, 6039745, 889174166, 3521866, 854556167, 88187, 5307848, 1631368, 245267209, 49742029, 1586928650, 665656670, 2176542731, 698701471, 266839052, 783523552, 512081933, 800128033, 1126502414, 870048034, 1830420495, 1328455715, 1693450256, 635043876, 1176698897, 1404334117, 591462418, 1471262758, 1494220819, 965017639]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.3, G.4, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(575051273358734709361081479545231183210109151901416839177166991464940394250879103589024882202061713474051017053367889812230747544159518233958646282309145864637825594242512892855379440897044937390481124456347946638516010361032485413994619136101739863440205403022140547635983792795805500379105175872435295835023231149288425636218470928743661568,9961472); a := G.1; b := G.3; c := G.4; d := G.5; e := G.6; f := G.7; g := G.8; h := G.9; i := G.10; j := G.11; k := G.12; l := G.13; m := G.14; n := G.15; o := G.16; p := G.17; q := G.18; r := G.19; s := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(575051273358734709361081479545231183210109151901416839177166991464940394250879103589024882202061713474051017053367889812230747544159518233958646282309145864637825594242512892855379440897044937390481124456347946638516010361032485413994619136101739863440205403022140547635983792795805500379105175872435295835023231149288425636218470928743661568,9961472)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14; n = G.15; o = G.16; p = G.17; q = G.18; r = G.19; s = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(575051273358734709361081479545231183210109151901416839177166991464940394250879103589024882202061713474051017053367889812230747544159518233958646282309145864637825594242512892855379440897044937390481124456347946638516010361032485413994619136101739863440205403022140547635983792795805500379105175872435295835023231149288425636218470928743661568,9961472)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14; n = G.15; o = G.16; p = G.17; q = G.18; r = G.19; s = G.20;
 
Permutation group:Degree $38$ $\langle(1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 38 | (1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9), (1,17,34,11,28,5,22,37,15,31,10,25,3,19,36,14,30,8,23,2,18,33,12,27,6,21,38,16,32,9,26,4,20,35,13,29,7,24) >;
 
Copy content gap:G := Group( (1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9), (1,17,34,11,28,5,22,37,15,31,10,25,3,19,36,14,30,8,23,2,18,33,12,27,6,21,38,16,32,9,26,4,20,35,13,29,7,24) );
 
Copy content sage:G = PermutationGroup(['(1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9)', '(1,17,34,11,28,5,22,37,15,31,10,25,3,19,36,14,30,8,23,2,18,33,12,27,6,21,38,16,32,9,26,4,20,35,13,29,7,24)'])
 
Transitive group: 38T49 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{18}$ . $C_{38}$ $(C_2^{18}.C_{19})$ . $C_2$ $C_2$ . $(C_2^{18}.C_{19})$ more information

Elements of the group are displayed as permutations of degree 38.

Homology

Abelianization: $C_{38} \simeq C_{2} \times C_{19}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 6 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: not computed
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{19}$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $27632 \times 27632$ character table is not available for this group.

Rational character table

The $27598 \times 27598$ rational character table is not available for this group.