# Group 9961472.a downloaded from the LMFDB on 12 December 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(575051273358734709361081479545231183210109151901416839177166991464940394250879103589024882202061713474051017053367889812230747544159518233958646282309145864637825594242512892855379440897044937390481124456347946638516010361032485413994619136101739863440205403022140547635983792795805500379105175872435295835023231149288425636218470928743661568,9961472); a := GPC.1; b := GPC.3; c := GPC.4; d := GPC.5; e := GPC.6; f := GPC.7; g := GPC.8; h := GPC.9; i := GPC.10; j := GPC.11; k := GPC.12; l := GPC.13; m := GPC.14; n := GPC.15; o := GPC.16; p := GPC.17; q := GPC.18; r := GPC.19; s := GPC.20; GPerm := Group( (1,32,24,16,8,38,29,22,14,6,35,28,20,12,3,34,26,17,10,2,31,23,15,7,37,30,21,13,5,36,27,19,11,4,33,25,18,9), (1,17,34,11,28,5,22,37,15,31,10,25,3,19,36,14,30,8,23,2,18,33,12,27,6,21,38,16,32,9,26,4,20,35,13,29,7,24) ); # Booleans booleans_9961472_a := rec( Agroup := true, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := true, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false);