Properties

Label 705277476864.ia
Order \( 2^{14} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22), (1,25,13,2,26,14)(3,27,15)(4,28,6,29)(5,30)(8,9)(10,22,35,12,24,34)(11,23,36)(16,18)(19,32,20,31)(21,33), (1,19,15,7,26,33,3,21,13,9,27,32,2,20,14,8,25,31)(4,6)(10,22)(11,24,12,23)(16,18)(28,30,29)(34,35,36) >;
 
Copy content gap:G := Group( (1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22), (1,25,13,2,26,14)(3,27,15)(4,28,6,29)(5,30)(8,9)(10,22,35,12,24,34)(11,23,36)(16,18)(19,32,20,31)(21,33), (1,19,15,7,26,33,3,21,13,9,27,32,2,20,14,8,25,31)(4,6)(10,22)(11,24,12,23)(16,18)(28,30,29)(34,35,36) );
 
Copy content sage:G = PermutationGroup(['(1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22)', '(1,25,13,2,26,14)(3,27,15)(4,28,6,29)(5,30)(8,9)(10,22,35,12,24,34)(11,23,36)(16,18)(19,32,20,31)(21,33)', '(1,19,15,7,26,33,3,21,13,9,27,32,2,20,14,8,25,31)(4,6)(10,22)(11,24,12,23)(16,18)(28,30,29)(34,35,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(29301895118313407503822935048819993576137763363847497947998903459352205329658160872618795772669831888505149122771377184070722116541490478830893717795851557886848803937682064470487167221880904667478567214658297870502656247561950000639424600361730013614963242813196017848759662084001056451118716844812597919472684647118397580043393274658119979551673879934463442547587454686736639290304262404601781552164828809279996716673569103692640421318636657516813202164312121815451739928964572850802111773916062531305891381555254921393683582974208158581884543732933221953596337359646143738216430943953668344685455633223617771425852773325251762755294205971376821182457861699542316272695321216436871482445952595059794000661970629856846069512983578414930806045390372661535095697818810622571160580249760630385648616454293523142630537755839858282277939018474166862273301374044066230180246771421859443543682764232177047875393710071653443502491953810571957129830715665712905636521480982286815357118209512046575696689136122811097099698137007212090089903663266113477399968519001630886717484916969359126154036729880545875173937141333659479454974313351987167203686019740270902948700625879676905214175175077190046609322440689391549264638580284142952403025556260717499160683064630032153924318094705073078057992962800351812227628916169943461483204130633511919935868955794569462584590495830431986643359793818366093680154636671413298758797751639694659838730765837189358787460989485036577516432315390552580272016519728715484235127568837931738067503463664440903251552971632073044395072218925235546360556584855460796658862306008906047973592338944675844551035629136832034475442909939257460662030764800280723269755176599142228568110958402615411977915884886518174119929737629407689776323514195911298312665501839917919940650571079277711809525087381394900939377069485456534906376585235148549336795347292731301851306317722133683128222762676991505616217001436409959019393245114424919486010556951552520764875243057695164754820009298856815658542646561156968974508031438429070466441518235926809345956055026755776412736982913545862064624950047989106032117110979071256181708104551128103069329298474149332967863711106613549639977826914269742644850634719293944439058592276293106033929665587835433962727179809717620991811290999747878616197403086612381525389140523589547002080513943749340685634965890886324030358915585869111096298145563943129858773787391139458035420588529748450731400612834814639114248570265830535763581349953668507079744511105355655595726121760285159686587295861956262976898021629022044050087474479119500700915518153564761755190699167543706466272029702801885984917632709572448039340208504273874546170011037619777933211152951678463274625710663985488289146473186528620029495004793086096593208751289024036074861220564491735276986267967173163872745348391831950402605988286397308797469029999137449030422223244790400436472718943938127368046926690370056756181076064966892634788761806735276661887350486223157341769682752177562803948281296132552726347833503524286917110274133785508371074479565304743867204724953873355354779078710712513065939975828278181402902930239448342081970820251788417562897463953400189832361491654008164884681366900757690217951816947611068467329515669391045976752678734224690601721462868585352876564711399427961132911354160800183058841534964002485711978081633970061657126500872199451293222277986712507275236924903332099743993492963766598976306978711097785207285040573147983864424286013090743227172269742256845719550814950066157161130191213567635262827679800339978693311,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.D_4:D_4$
Order: \(705277476864\)\(\medspace = 2^{14} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 48
Elements 1 20548431 96059600 7540950960 34171597872 42764702976 3390724800 166287022848 29386561536 98004333888 188654469120 76187381760 58773123072 705277476864
Conjugacy classes   1 17 130 40 788 16 252 692 2 351 110 247 4 2650
Divisions 1 17 130 40 744 16 252 621 2 351 80 167 2 2423
Autjugacy classes 1 16 120 36 680 11 142 581 1 231 67 118 1 2005

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([30, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 9086629777920, 39580800472201, 151, 37529476214042, 3121485540362, 2980881955203, 30330938500833, 5324987572143, 9671538582813, 76550506474804, 33660238150234, 9526021836664, 1000443461194, 424, 5295156606725, 29985448803875, 18873057286145, 4332707342015, 1082949912155, 67364996467446, 38664529241556, 34278306600366, 3133093554456, 7656070490586, 2511061628826, 606, 75640755916807, 68134355650597, 4182591928387, 1117192233697, 8505820373887, 464381399677, 601497433657, 144556024144328, 22576998896678, 18835960229348, 17080255868498, 8815996823888, 530592798938, 104383661768, 379664957918, 8629027448, 4066521523209, 16440171667239, 48987279535269, 15680685736899, 3326528703729, 1959482032359, 1003613047389, 147387238419, 78776618649, 879, 226715410817290, 116109117970600, 41224652858470, 8010131912740, 10053412031650, 20372465680, 173653607350, 85718411680, 145404430630, 696997716491, 8056714844201, 27296850493511, 1960919954021, 1960027891331, 22224235841, 9099319871, 393637896941, 65908695851, 12706306121, 6353152151, 1061, 377357460492, 11885231554602, 1697890222152, 36391812, 7860603072, 1516542, 1011132, 9642, 239081177180173, 133081282333483, 30406466905993, 3772519712743, 2776289599573, 584105709763, 1653394873, 38652900523, 229480273, 10816772683, 25513390033, 78395023, 1243, 2616169881614, 665127936044, 55834550899274, 2450391782504, 5878823961734, 884317824164, 759326594, 24942881024, 797915054, 16376256284, 13856832314, 42001544, 288538679623695, 144191943106605, 232884979275, 655542927465, 37489651335, 87077851395, 3070898145, 1855042815, 518685, 14805, 1425, 106575263170576, 53287631585326, 123350999116, 1322056, 46256624836, 23794786, 3966016, 440926, 12646, 287927232215057, 134267048772527, 8230837135757, 726727852907, 48032818697, 250413803837, 812041906547, 467373117137, 2268181727, 1135315757, 97607, 1607, 34741446082578, 551522442288, 3829524558, 319127178, 159563718, 123348, 41298, 82488, 172402059916819, 151878940876849, 1137946060879, 1378640476909, 2287138939339, 37292724169, 9070056199, 550368173029, 136090886659, 72578084689, 10919885719, 648409, 108469, 18529, 1789, 312673014743060, 90510609530930, 3266000, 685686435950, 38093691020, 272360, 3174474470, 19046845700, 544730, 91190, 15650, 2452354755861, 3765732664371, 1411970123601, 41050692872751, 2561349431661, 22453841691, 16638035241, 599219454471, 171918378981, 82140232971, 91686092181, 21384411, 5560281, 119331, 1971, 667546583062, 1545246772, 333816215122, 24782666895472, 13907220622, 13909009162, 1158935272, 1158935332, 57367284802, 99892, 16737843732503, 1044864852533, 34487622512723, 162754790513, 198329057423, 1306377331403, 1137368770793, 629520077063, 120532510373, 1345326083, 22253, 2153, 2176782336024, 2176782336054, 279936084, 5038848114, 1259712144, 11664204, 68024448234, 34992264, 18654, 41923215385, 291133495, 40749365330005, 282981703825, 848945111245, 129699947815, 36392005, 10075, 261213880346, 130606940216, 1813985366, 195910410356, 881596846226, 75582926, 226748396, 2720978186, 226748576, 37791836, 6299096, 175616, 271515525147, 3792438558777, 69603287127, 101609303157, 1015844820627, 2971307888817, 2514261980367, 266890982637, 66311239947, 105815808297, 2586669447, 470292897, 78382557, 13064217, 4355157, 544977, 141616512028, 8487032463418, 667311436888, 11573239616758, 1472962812628, 6207464393458, 4524119879248, 670842829678, 132975198988, 61860320218, 13394969248, 15343292518, 1339494178, 223249438, 37208698, 10712038, 1691938, 15963742310429, 4063336358459, 13788303667289, 145146816119, 17251014009749, 9060856473779, 2530593446609, 2245058726639, 397565107469, 113458061099, 3527258729, 3527194019, 587866079, 213451739, 18662999, 2916659, 972719]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.26, G.27, G.28, G.29, G.30]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "n2", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(29301895118313407503822935048819993576137763363847497947998903459352205329658160872618795772669831888505149122771377184070722116541490478830893717795851557886848803937682064470487167221880904667478567214658297870502656247561950000639424600361730013614963242813196017848759662084001056451118716844812597919472684647118397580043393274658119979551673879934463442547587454686736639290304262404601781552164828809279996716673569103692640421318636657516813202164312121815451739928964572850802111773916062531305891381555254921393683582974208158581884543732933221953596337359646143738216430943953668344685455633223617771425852773325251762755294205971376821182457861699542316272695321216436871482445952595059794000661970629856846069512983578414930806045390372661535095697818810622571160580249760630385648616454293523142630537755839858282277939018474166862273301374044066230180246771421859443543682764232177047875393710071653443502491953810571957129830715665712905636521480982286815357118209512046575696689136122811097099698137007212090089903663266113477399968519001630886717484916969359126154036729880545875173937141333659479454974313351987167203686019740270902948700625879676905214175175077190046609322440689391549264638580284142952403025556260717499160683064630032153924318094705073078057992962800351812227628916169943461483204130633511919935868955794569462584590495830431986643359793818366093680154636671413298758797751639694659838730765837189358787460989485036577516432315390552580272016519728715484235127568837931738067503463664440903251552971632073044395072218925235546360556584855460796658862306008906047973592338944675844551035629136832034475442909939257460662030764800280723269755176599142228568110958402615411977915884886518174119929737629407689776323514195911298312665501839917919940650571079277711809525087381394900939377069485456534906376585235148549336795347292731301851306317722133683128222762676991505616217001436409959019393245114424919486010556951552520764875243057695164754820009298856815658542646561156968974508031438429070466441518235926809345956055026755776412736982913545862064624950047989106032117110979071256181708104551128103069329298474149332967863711106613549639977826914269742644850634719293944439058592276293106033929665587835433962727179809717620991811290999747878616197403086612381525389140523589547002080513943749340685634965890886324030358915585869111096298145563943129858773787391139458035420588529748450731400612834814639114248570265830535763581349953668507079744511105355655595726121760285159686587295861956262976898021629022044050087474479119500700915518153564761755190699167543706466272029702801885984917632709572448039340208504273874546170011037619777933211152951678463274625710663985488289146473186528620029495004793086096593208751289024036074861220564491735276986267967173163872745348391831950402605988286397308797469029999137449030422223244790400436472718943938127368046926690370056756181076064966892634788761806735276661887350486223157341769682752177562803948281296132552726347833503524286917110274133785508371074479565304743867204724953873355354779078710712513065939975828278181402902930239448342081970820251788417562897463953400189832361491654008164884681366900757690217951816947611068467329515669391045976752678734224690601721462868585352876564711399427961132911354160800183058841534964002485711978081633970061657126500872199451293222277986712507275236924903332099743993492963766598976306978711097785207285040573147983864424286013090743227172269742256845719550814950066157161130191213567635262827679800339978693311,705277476864); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.10; h := G.12; i := G.14; j := G.16; k := G.18; l := G.20; m := G.22; n := G.24; o := G.26; p := G.27; q := G.28; r := G.29; s := G.30;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(29301895118313407503822935048819993576137763363847497947998903459352205329658160872618795772669831888505149122771377184070722116541490478830893717795851557886848803937682064470487167221880904667478567214658297870502656247561950000639424600361730013614963242813196017848759662084001056451118716844812597919472684647118397580043393274658119979551673879934463442547587454686736639290304262404601781552164828809279996716673569103692640421318636657516813202164312121815451739928964572850802111773916062531305891381555254921393683582974208158581884543732933221953596337359646143738216430943953668344685455633223617771425852773325251762755294205971376821182457861699542316272695321216436871482445952595059794000661970629856846069512983578414930806045390372661535095697818810622571160580249760630385648616454293523142630537755839858282277939018474166862273301374044066230180246771421859443543682764232177047875393710071653443502491953810571957129830715665712905636521480982286815357118209512046575696689136122811097099698137007212090089903663266113477399968519001630886717484916969359126154036729880545875173937141333659479454974313351987167203686019740270902948700625879676905214175175077190046609322440689391549264638580284142952403025556260717499160683064630032153924318094705073078057992962800351812227628916169943461483204130633511919935868955794569462584590495830431986643359793818366093680154636671413298758797751639694659838730765837189358787460989485036577516432315390552580272016519728715484235127568837931738067503463664440903251552971632073044395072218925235546360556584855460796658862306008906047973592338944675844551035629136832034475442909939257460662030764800280723269755176599142228568110958402615411977915884886518174119929737629407689776323514195911298312665501839917919940650571079277711809525087381394900939377069485456534906376585235148549336795347292731301851306317722133683128222762676991505616217001436409959019393245114424919486010556951552520764875243057695164754820009298856815658542646561156968974508031438429070466441518235926809345956055026755776412736982913545862064624950047989106032117110979071256181708104551128103069329298474149332967863711106613549639977826914269742644850634719293944439058592276293106033929665587835433962727179809717620991811290999747878616197403086612381525389140523589547002080513943749340685634965890886324030358915585869111096298145563943129858773787391139458035420588529748450731400612834814639114248570265830535763581349953668507079744511105355655595726121760285159686587295861956262976898021629022044050087474479119500700915518153564761755190699167543706466272029702801885984917632709572448039340208504273874546170011037619777933211152951678463274625710663985488289146473186528620029495004793086096593208751289024036074861220564491735276986267967173163872745348391831950402605988286397308797469029999137449030422223244790400436472718943938127368046926690370056756181076064966892634788761806735276661887350486223157341769682752177562803948281296132552726347833503524286917110274133785508371074479565304743867204724953873355354779078710712513065939975828278181402902930239448342081970820251788417562897463953400189832361491654008164884681366900757690217951816947611068467329515669391045976752678734224690601721462868585352876564711399427961132911354160800183058841534964002485711978081633970061657126500872199451293222277986712507275236924903332099743993492963766598976306978711097785207285040573147983864424286013090743227172269742256845719550814950066157161130191213567635262827679800339978693311,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(29301895118313407503822935048819993576137763363847497947998903459352205329658160872618795772669831888505149122771377184070722116541490478830893717795851557886848803937682064470487167221880904667478567214658297870502656247561950000639424600361730013614963242813196017848759662084001056451118716844812597919472684647118397580043393274658119979551673879934463442547587454686736639290304262404601781552164828809279996716673569103692640421318636657516813202164312121815451739928964572850802111773916062531305891381555254921393683582974208158581884543732933221953596337359646143738216430943953668344685455633223617771425852773325251762755294205971376821182457861699542316272695321216436871482445952595059794000661970629856846069512983578414930806045390372661535095697818810622571160580249760630385648616454293523142630537755839858282277939018474166862273301374044066230180246771421859443543682764232177047875393710071653443502491953810571957129830715665712905636521480982286815357118209512046575696689136122811097099698137007212090089903663266113477399968519001630886717484916969359126154036729880545875173937141333659479454974313351987167203686019740270902948700625879676905214175175077190046609322440689391549264638580284142952403025556260717499160683064630032153924318094705073078057992962800351812227628916169943461483204130633511919935868955794569462584590495830431986643359793818366093680154636671413298758797751639694659838730765837189358787460989485036577516432315390552580272016519728715484235127568837931738067503463664440903251552971632073044395072218925235546360556584855460796658862306008906047973592338944675844551035629136832034475442909939257460662030764800280723269755176599142228568110958402615411977915884886518174119929737629407689776323514195911298312665501839917919940650571079277711809525087381394900939377069485456534906376585235148549336795347292731301851306317722133683128222762676991505616217001436409959019393245114424919486010556951552520764875243057695164754820009298856815658542646561156968974508031438429070466441518235926809345956055026755776412736982913545862064624950047989106032117110979071256181708104551128103069329298474149332967863711106613549639977826914269742644850634719293944439058592276293106033929665587835433962727179809717620991811290999747878616197403086612381525389140523589547002080513943749340685634965890886324030358915585869111096298145563943129858773787391139458035420588529748450731400612834814639114248570265830535763581349953668507079744511105355655595726121760285159686587295861956262976898021629022044050087474479119500700915518153564761755190699167543706466272029702801885984917632709572448039340208504273874546170011037619777933211152951678463274625710663985488289146473186528620029495004793086096593208751289024036074861220564491735276986267967173163872745348391831950402605988286397308797469029999137449030422223244790400436472718943938127368046926690370056756181076064966892634788761806735276661887350486223157341769682752177562803948281296132552726347833503524286917110274133785508371074479565304743867204724953873355354779078710712513065939975828278181402902930239448342081970820251788417562897463953400189832361491654008164884681366900757690217951816947611068467329515669391045976752678734224690601721462868585352876564711399427961132911354160800183058841534964002485711978081633970061657126500872199451293222277986712507275236924903332099743993492963766598976306978711097785207285040573147983864424286013090743227172269742256845719550814950066157161130191213567635262827679800339978693311,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 
Permutation group:Degree $36$ $\langle(1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22), (1,25,13,2,26,14)(3,27,15)(4,28,6,29)(5,30)(8,9)(10,22,35,12,24,34)(11,23,36)(16,18)(19,32,20,31)(21,33), (1,19,15,7,26,33,3,21,13,9,27,32,2,20,14,8,25,31)(4,6)(10,22)(11,24,12,23)(16,18)(28,30,29)(34,35,36) >;
 
Copy content gap:G := Group( (1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22), (1,25,13,2,26,14)(3,27,15)(4,28,6,29)(5,30)(8,9)(10,22,35,12,24,34)(11,23,36)(16,18)(19,32,20,31)(21,33), (1,19,15,7,26,33,3,21,13,9,27,32,2,20,14,8,25,31)(4,6)(10,22)(11,24,12,23)(16,18)(28,30,29)(34,35,36) );
 
Copy content sage:G = PermutationGroup(['(1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22)', '(1,25,13,2,26,14)(3,27,15)(4,28,6,29)(5,30)(8,9)(10,22,35,12,24,34)(11,23,36)(16,18)(19,32,20,31)(21,33)', '(1,19,15,7,26,33,3,21,13,9,27,32,2,20,14,8,25,31)(4,6)(10,22)(11,24,12,23)(16,18)(28,30,29)(34,35,36)'])
 
Transitive group: 36T119053 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^8.C_3^4.Q_8)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.D_4)$ . $D_4$ (2) $C_3^{12}$ . $(A_4^2\wr C_2.C_2^2.D_4)$ $(C_3^{12}.C_2^8.C_3^4.D_8.C_2)$ . $C_2$ (2) all 17

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 30 normal subgroups (16 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\wr D_4.D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2650 \times 2650$ character table is not available for this group.

Rational character table

The $2423 \times 2423$ rational character table is not available for this group.