# Group 705277476864.ia downloaded from the LMFDB on 29 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(29301895118313407503822935048819993576137763363847497947998903459352205329658160872618795772669831888505149122771377184070722116541490478830893717795851557886848803937682064470487167221880904667478567214658297870502656247561950000639424600361730013614963242813196017848759662084001056451118716844812597919472684647118397580043393274658119979551673879934463442547587454686736639290304262404601781552164828809279996716673569103692640421318636657516813202164312121815451739928964572850802111773916062531305891381555254921393683582974208158581884543732933221953596337359646143738216430943953668344685455633223617771425852773325251762755294205971376821182457861699542316272695321216436871482445952595059794000661970629856846069512983578414930806045390372661535095697818810622571160580249760630385648616454293523142630537755839858282277939018474166862273301374044066230180246771421859443543682764232177047875393710071653443502491953810571957129830715665712905636521480982286815357118209512046575696689136122811097099698137007212090089903663266113477399968519001630886717484916969359126154036729880545875173937141333659479454974313351987167203686019740270902948700625879676905214175175077190046609322440689391549264638580284142952403025556260717499160683064630032153924318094705073078057992962800351812227628916169943461483204130633511919935868955794569462584590495830431986643359793818366093680154636671413298758797751639694659838730765837189358787460989485036577516432315390552580272016519728715484235127568837931738067503463664440903251552971632073044395072218925235546360556584855460796658862306008906047973592338944675844551035629136832034475442909939257460662030764800280723269755176599142228568110958402615411977915884886518174119929737629407689776323514195911298312665501839917919940650571079277711809525087381394900939377069485456534906376585235148549336795347292731301851306317722133683128222762676991505616217001436409959019393245114424919486010556951552520764875243057695164754820009298856815658542646561156968974508031438429070466441518235926809345956055026755776412736982913545862064624950047989106032117110979071256181708104551128103069329298474149332967863711106613549639977826914269742644850634719293944439058592276293106033929665587835433962727179809717620991811290999747878616197403086612381525389140523589547002080513943749340685634965890886324030358915585869111096298145563943129858773787391139458035420588529748450731400612834814639114248570265830535763581349953668507079744511105355655595726121760285159686587295861956262976898021629022044050087474479119500700915518153564761755190699167543706466272029702801885984917632709572448039340208504273874546170011037619777933211152951678463274625710663985488289146473186528620029495004793086096593208751289024036074861220564491735276986267967173163872745348391831950402605988286397308797469029999137449030422223244790400436472718943938127368046926690370056756181076064966892634788761806735276661887350486223157341769682752177562803948281296132552726347833503524286917110274133785508371074479565304743867204724953873355354779078710712513065939975828278181402902930239448342081970820251788417562897463953400189832361491654008164884681366900757690217951816947611068467329515669391045976752678734224690601721462868585352876564711399427961132911354160800183058841534964002485711978081633970061657126500872199451293222277986712507275236924903332099743993492963766598976306978711097785207285040573147983864424286013090743227172269742256845719550814950066157161130191213567635262827679800339978693311,705277476864); a := GPC.1; b := GPC.2; c := GPC.4; d := GPC.5; e := GPC.7; f := GPC.9; g := GPC.10; h := GPC.12; i := GPC.14; j := GPC.16; k := GPC.18; l := GPC.20; m := GPC.22; n := GPC.24; o := GPC.26; p := GPC.27; q := GPC.28; r := GPC.29; s := GPC.30; GPerm := Group( (1,29,15,17,26,4,2,28,14,16,27,6,3,30,13,18,25,5)(7,12,32,35,21,24,8,10,33,36,20,23,9,11,31,34,19,22), (1,25,13,2,26,14)(3,27,15)(4,28,6,29)(5,30)(8,9)(10,22,35,12,24,34)(11,23,36)(16,18)(19,32,20,31)(21,33), (1,19,15,7,26,33,3,21,13,9,27,32,2,20,14,8,25,31)(4,6)(10,22)(11,24,12,23)(16,18)(28,30,29)(34,35,36) ); # Booleans booleans_705277476864_ia := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false);