Properties

Label 47377612800.a
Order \( 2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $120$
Trans deg. $120$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := Sp(8,2);
 
Copy content gap:G := Sp(8,2);
 
Copy content sage:G = PSp(8,2)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\Sp(8,2)$
Order: \(47377612800\)\(\medspace = 2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(42840\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\Sp(8,2)$, of order \(47377612800\)\(\medspace = 2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\Sp(8,2)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 12 14 15 17 18 20 21 24 30
Elements 1 1371135 16461440 345461760 171085824 1830353280 1128038400 3948134400 2632089600 3355914240 8389785600 3384115200 4211343360 5573836800 2632089600 2368880640 2256076800 1974067200 3158507520 47377612800
Conjugacy classes   1 6 4 12 2 16 1 6 2 4 13 1 3 2 1 2 1 2 2 81
Divisions 1 6 4 12 2 16 1 6 2 4 13 1 3 1 1 2 1 2 2 80
Autjugacy classes 1 6 4 12 2 16 1 6 2 4 13 1 3 2 1 2 1 2 2 81

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 35 51 85 119 135 238 510 595 918 1190 1275 1512 1785 2295 2856 2975 3213 3400 3570 3808 4200 4760 5712 5950 7140 8160 8925 8960 9639 10200 11900 13056 13600 14280 14688 16065 17850 18360 19040 23800 26775 28560 28917 30464 32130 34425 34560 38080 38556 42525 43520 47600 48195 51408 53550 57120 65536 68850 85050
Irr. complex chars.   1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 2 2 2 1 3 1 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 5 2 1 1 2 2 1 1 1 3 2 1 1 1 2 1 1 1 1 1 1 1 1 0 81
Irr. rational chars. 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 2 2 2 1 3 1 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 5 2 1 1 2 2 1 1 1 3 2 1 1 1 0 1 1 1 1 1 1 1 1 1 80

Minimal presentations

Permutation degree:$120$
Transitive degree:$120$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 35 35 35
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\Sp(8,2)$, $\SO(9,2)$, $\PSp(8,2)$, $\Orth(9,2)$, $\Omega(9,2)$, $\PO(9,2)$, $\GSp(8,2)$, $\PSigmaSp(8,2)$
Copy content magma:G := Sp(8,2);
 
Copy content gap:G := Sp(8,2);
 
Copy content magma:G := SO(9,2);
 
Copy content gap:G := SO(9,2);
 
Copy content magma:G := PSp(8,2);
 
Copy content gap:G := PSp(8,2);
 
Copy content sage:G = PSp(8,2)
 
Copy content magma:G := GO(9,2);
 
Copy content gap:G := GO(9,2);
 
Copy content sage:G = GO(9,2)
 
Copy content magma:G := Omega(9,2);
 
Copy content gap:G := Omega(9,2);
 
Copy content magma:G := PGO(9,2);
 
Copy content gap:G := PGO(9,2);
 
Copy content magma:G := CSp(8,2);
 
Copy content magma:G := PSigmaSp(8,2);
 
Permutation group:Degree $120$ $\langle(1,3,6,11,17,23,30,39)(2,4,8,14,19,24,32,42)(5,9,15,20,26,34,44,36)(7,12,18,13,10,16,21,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 120 | (1,3,6,11,17,23,30,39)(2,4,8,14,19,24,32,42)(5,9,15,20,26,34,44,36)(7,12,18,13,10,16,21,28)(22,29,37,41,51,60,55,65)(25,33,43,52,62,70,79,91)(27,35,46,56)(31,40,50,59,68,76,87,100)(38,48,57,63,71,80,92,104)(45,54,64,72,82,95,108,53)(47,49,58,66,74,84,96,109)(61,69,77,89,102,94,107,116)(67,75,85,98,88,101,112,118)(73,83,81,93,106,115,117,120)(78,90,103,86,99,111,97,110)(105,114,119,113), (1,2)(3,5)(4,7)(6,10)(8,13)(9,14)(12,18)(17,22)(20,25)(21,27)(24,31)(26,33)(28,36)(30,38)(32,41)(35,45)(37,47)(39,48)(40,49)(42,51)(44,53)(46,55)(50,58)(52,61)(54,63)(57,60)(59,67)(66,73)(70,78)(72,81)(76,86)(77,88)(79,87)(80,84)(82,94)(85,97)(90,99)(92,96)(93,105)(95,107)(102,113)(106,114)(112,117)(118,120) >;
 
Copy content gap:G := Group( (1,3,6,11,17,23,30,39)(2,4,8,14,19,24,32,42)(5,9,15,20,26,34,44,36)(7,12,18,13,10,16,21,28)(22,29,37,41,51,60,55,65)(25,33,43,52,62,70,79,91)(27,35,46,56)(31,40,50,59,68,76,87,100)(38,48,57,63,71,80,92,104)(45,54,64,72,82,95,108,53)(47,49,58,66,74,84,96,109)(61,69,77,89,102,94,107,116)(67,75,85,98,88,101,112,118)(73,83,81,93,106,115,117,120)(78,90,103,86,99,111,97,110)(105,114,119,113), (1,2)(3,5)(4,7)(6,10)(8,13)(9,14)(12,18)(17,22)(20,25)(21,27)(24,31)(26,33)(28,36)(30,38)(32,41)(35,45)(37,47)(39,48)(40,49)(42,51)(44,53)(46,55)(50,58)(52,61)(54,63)(57,60)(59,67)(66,73)(70,78)(72,81)(76,86)(77,88)(79,87)(80,84)(82,94)(85,97)(90,99)(92,96)(93,105)(95,107)(102,113)(106,114)(112,117)(118,120) );
 
Copy content sage:G = PermutationGroup(['(1,3,6,11,17,23,30,39)(2,4,8,14,19,24,32,42)(5,9,15,20,26,34,44,36)(7,12,18,13,10,16,21,28)(22,29,37,41,51,60,55,65)(25,33,43,52,62,70,79,91)(27,35,46,56)(31,40,50,59,68,76,87,100)(38,48,57,63,71,80,92,104)(45,54,64,72,82,95,108,53)(47,49,58,66,74,84,96,109)(61,69,77,89,102,94,107,116)(67,75,85,98,88,101,112,118)(73,83,81,93,106,115,117,120)(78,90,103,86,99,111,97,110)(105,114,119,113)', '(1,2)(3,5)(4,7)(6,10)(8,13)(9,14)(12,18)(17,22)(20,25)(21,27)(24,31)(26,33)(28,36)(30,38)(32,41)(35,45)(37,47)(39,48)(40,49)(42,51)(44,53)(46,55)(50,58)(52,61)(54,63)(57,60)(59,67)(66,73)(70,78)(72,81)(76,86)(77,88)(79,87)(80,84)(82,94)(85,97)(90,99)(92,96)(93,105)(95,107)(102,113)(106,114)(112,117)(118,120)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as matrices in $\Sp(8,2)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 2 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\Sp(8,2)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4:C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $81 \times 81$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $80 \times 80$ rational character table.