Properties

Label 46448640.a
Order \( 2^{14} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $18$
Trans deg. $18$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 18 | (1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16), (1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8) >;
 
Copy content gap:G := Group( (1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16), (1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8) );
 
Copy content sage:G = PermutationGroup(['(1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16)', '(1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8)'])
 

Group information

Description:$C_2^8.A_9$
Order: \(46448640\)\(\medspace = 2^{14} \cdot 3^{4} \cdot 5 \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.S_9$, of order \(92897280\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $A_9$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and perfect (hence nonsolvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 12 14 15 20 24 30
Elements 1 39567 197792 1992816 48384 3698016 1658880 3144960 10321920 1306368 9192960 4976640 1548288 1741824 1935360 4644864 46448640
Conjugacy classes   1 8 3 15 1 16 1 6 2 5 11 3 2 2 2 6 84
Divisions 1 8 3 15 1 16 1 6 2 5 11 2 1 2 2 3 79
Autjugacy classes 1 8 3 15 1 16 1 6 1 5 11 2 1 2 2 3 78

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 8 9 21 27 28 35 36 42 48 56 63 84 105 120 126 162 168 180 189 216 252 315 378 405 420 504 540 576 630 720 756 810 840 1008 1260 1344 1512 1680 1890 2268 2688
Irr. complex chars.   1 1 1 2 1 1 2 2 1 1 1 1 3 1 1 3 1 2 1 4 3 2 1 2 2 4 7 2 1 3 1 7 0 4 1 3 3 3 1 2 1 0 84
Irr. rational chars. 1 1 1 0 1 1 2 2 2 1 1 1 3 1 1 3 1 2 1 2 3 2 1 3 0 4 7 2 1 3 1 5 1 4 1 3 1 4 1 2 1 1 79

Minimal presentations

Permutation degree:$18$
Transitive degree:$18$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 9 9 9
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $18$ $\langle(1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16), (1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 18 | (1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16), (1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8) >;
 
Copy content gap:G := Group( (1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16), (1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8) );
 
Copy content sage:G = PermutationGroup(['(1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16)', '(1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8)'])
 
Transitive group: 18T963 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^8$ . $A_9$ more information

Elements of the group are displayed as permutations of degree 18.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 3 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_2^8.A_9$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.A_9$ $G/G' \simeq$ $C_1$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^8.A_9$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^8$ $G/\operatorname{Fit} \simeq$ $A_9$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^8$ $G/R \simeq$ $A_9$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^8$ $G/\operatorname{soc} \simeq$ $A_9$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2\wr D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_2^8.A_9$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^8.A_9$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^8.A_9$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 6 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $84 \times 84$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $79 \times 79$ rational character table.