Properties

Label 18T963
Order \(46448640\)
n \(18\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $963$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,6,11,4,17,14,10,15)(2,7,5,12,3,18,13,9,16), (1,9,11,3,5,15,14,2,10,12,4,6,16,13)(7,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
181440:  $A_9$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 6: None

Degree 9: $A_9$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 84 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $46448640=2^{14} \cdot 3^{4} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.