Properties

Label 4585351680.b
Order \( 2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $364$
Trans deg. $364$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := PSp(6,3);
 
Copy content gap:G := PSp(6,3);
 
Copy content sage:G = PSp(6,3)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\PSp(6,3)$
Order: \(4585351680\)\(\medspace = 2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(32760\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(9170703360\)\(\medspace = 2^{10} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\PSp(6,3)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 12 13 14 15 18 20 24 30 36
Elements 1 196911 5307848 6014736 38211264 191115288 327525120 191056320 382112640 38211264 513021600 705438720 327525120 305690112 382112640 229267584 382112640 305690112 254741760 4585351680
Conjugacy classes   1 2 7 3 1 16 1 2 8 1 14 2 1 2 6 1 2 2 2 74
Divisions 1 2 5 3 1 10 1 2 4 1 9 1 1 1 3 1 1 1 1 49
Autjugacy classes 1 2 5 3 1 10 1 2 4 1 9 2 1 1 3 1 1 1 1 50

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 13 26 78 91 105 168 182 195 273 455 546 728 819 910 1092 1170 1365 1456 1820 2106 2184 2340 2457 2730 2835 3640 4095 4368 4536 4914 5265 5460 5824 6552 7280 7371 8190 9477 10920 11648 12285 13104 14560 14742 16380 16640 17472 17920 18954 19683 21840 23296 24570 29120 35840
Irr. complex chars.   1 2 0 1 2 1 1 0 1 2 2 2 2 1 0 0 2 6 0 3 1 2 0 3 1 1 2 2 0 1 0 1 4 3 2 0 2 1 2 2 3 2 0 3 0 1 2 1 2 0 1 0 0 0 0 0 74
Irr. rational chars. 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 4 1 1 0 1 1 1 1 2 1 0 1 0 2 0 1 2 0 1 1 1 1 2 1 0 1 1 1 1 1 1 1 49

Minimal presentations

Permutation degree:$364$
Transitive degree:$364$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 13 26 26
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\PSp(6,3)$, $\PSigmaSp(6,3)$
Copy content magma:G := PSp(6,3);
 
Copy content gap:G := PSp(6,3);
 
Copy content sage:G = PSp(6,3)
 
Copy content magma:G := PSigmaSp(6,3);
 
Permutation group:Degree $364$ $\langle(1,17,143,138,267,69,72,197,272,278,82,253,6,3,2)(4,5,19,223,222)(7,289,303,39,53,68,101,269,183,349,171,188,189,182,50) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 364 | (1,17,143,138,267,69,72,197,272,278,82,253,6,3,2)(4,5,19,223,222)(7,289,303,39,53,68,101,269,183,349,171,188,189,182,50)(8,310,314,100,216,59,274,287,227,174,74,324,67,350,170)(9,275,342,245,44,276,246,331,265,61,347,113,130,48,306)(10,177,163,37,120,234,355,137,221,293,346,273,220,268,353)(11,316,256,134,202)(12,363,87,231,70,299,191,277,46,112,239,99,111,213,326)(13,83,357,215,71)(14,255,136,38,203,152,107,47,122,257,26,145,281,290,126)(15,325,335,356,58,73,327,129,271,364,81,266,201,36,51)(16,43,65,248,282)(18,218,318,184,233,27,55,150,291,86,187,154,94,260,251)(20,166,180,270,62,280,258,146,309,108,24,133,307,261,322)(21,117,41,323,304,232,132,135,205,292,42,124,103,35,344)(22,175,321,259,161,96,288,179,181,224,301,198,89,332,296)(23,317,359,142,153)(25,63,200,195,127)(28,109,308,264,110,351,337,167,240,140,176,119,343,219,345)(29,169,199,148,116)(30,283,77,330,361,186,84,165,158,336,80,263,229,33,34)(31,294,340,92,312)(32,90,147,212,247)(40,206,54,217,141)(45,131,159,60,193)(49,56,328,279,285)(52,156,286,157,320)(57,121,297,243,85,105,115,95,194,155,226,302,250,249,300)(64,228,334,102,98)(75,97,78,211,237,235,236,118,360,352,114,354,204,341,139)(76,208,149,173,254)(79,358,225,125,214)(88,164,196,311,284)(91,338,207,190,93)(104,362,295,151,230)(106,315,252,333,262)(123,178,192,144,348)(128,238,329,185,210)(160,305,242,168,209)(162,319,244)(172,298,313,339,241), (7,188)(8,311)(9,358)(11,353)(12,100)(13,21)(14,104)(15,272)(16,174)(17,300)(19,302)(20,235)(22,132)(23,263)(24,203)(25,344)(26,173)(27,255)(28,339)(29,195)(30,244)(31,193)(32,357)(33,303)(34,258)(35,56)(36,123)(38,333)(39,150)(40,341)(41,322)(42,190)(44,329)(45,148)(46,305)(47,261)(48,262)(49,170)(50,285)(51,157)(52,266)(53,168)(54,121)(55,138)(57,337)(58,144)(59,65)(60,342)(61,228)(62,233)(63,240)(64,98)(66,141)(67,277)(68,321)(69,197)(70,296)(71,325)(72,270)(73,218)(74,172)(75,345)(76,364)(77,247)(78,212)(79,152)(82,113)(83,147)(84,217)(85,119)(86,103)(87,346)(88,92)(89,354)(91,165)(93,265)(94,158)(95,273)(96,180)(97,227)(99,177)(101,236)(102,245)(105,281)(106,306)(109,309)(110,133)(114,336)(115,242)(116,291)(117,146)(118,295)(120,160)(122,241)(125,130)(126,140)(127,229)(128,331)(131,149)(136,155)(137,269)(139,186)(142,292)(143,275)(145,268)(151,169)(156,256)(159,347)(161,167)(162,237)(163,318)(166,280)(171,350)(175,199)(176,294)(178,184)(179,239)(181,201)(182,310)(183,189)(185,205)(187,221)(192,288)(194,206)(196,232)(198,207)(200,231)(202,213)(204,238)(208,290)(209,243)(210,260)(211,282)(214,264)(215,323)(216,313)(219,312)(220,324)(222,249)(226,253)(230,293)(234,314)(248,283)(254,279)(257,361)(259,278)(267,335)(271,340)(274,330)(276,338)(284,349)(286,327)(289,299)(297,363)(298,334)(304,362)(315,351)(317,360)(320,356)(326,343) >;
 
Copy content gap:G := Group( (1,17,143,138,267,69,72,197,272,278,82,253,6,3,2)(4,5,19,223,222)(7,289,303,39,53,68,101,269,183,349,171,188,189,182,50)(8,310,314,100,216,59,274,287,227,174,74,324,67,350,170)(9,275,342,245,44,276,246,331,265,61,347,113,130,48,306)(10,177,163,37,120,234,355,137,221,293,346,273,220,268,353)(11,316,256,134,202)(12,363,87,231,70,299,191,277,46,112,239,99,111,213,326)(13,83,357,215,71)(14,255,136,38,203,152,107,47,122,257,26,145,281,290,126)(15,325,335,356,58,73,327,129,271,364,81,266,201,36,51)(16,43,65,248,282)(18,218,318,184,233,27,55,150,291,86,187,154,94,260,251)(20,166,180,270,62,280,258,146,309,108,24,133,307,261,322)(21,117,41,323,304,232,132,135,205,292,42,124,103,35,344)(22,175,321,259,161,96,288,179,181,224,301,198,89,332,296)(23,317,359,142,153)(25,63,200,195,127)(28,109,308,264,110,351,337,167,240,140,176,119,343,219,345)(29,169,199,148,116)(30,283,77,330,361,186,84,165,158,336,80,263,229,33,34)(31,294,340,92,312)(32,90,147,212,247)(40,206,54,217,141)(45,131,159,60,193)(49,56,328,279,285)(52,156,286,157,320)(57,121,297,243,85,105,115,95,194,155,226,302,250,249,300)(64,228,334,102,98)(75,97,78,211,237,235,236,118,360,352,114,354,204,341,139)(76,208,149,173,254)(79,358,225,125,214)(88,164,196,311,284)(91,338,207,190,93)(104,362,295,151,230)(106,315,252,333,262)(123,178,192,144,348)(128,238,329,185,210)(160,305,242,168,209)(162,319,244)(172,298,313,339,241), (7,188)(8,311)(9,358)(11,353)(12,100)(13,21)(14,104)(15,272)(16,174)(17,300)(19,302)(20,235)(22,132)(23,263)(24,203)(25,344)(26,173)(27,255)(28,339)(29,195)(30,244)(31,193)(32,357)(33,303)(34,258)(35,56)(36,123)(38,333)(39,150)(40,341)(41,322)(42,190)(44,329)(45,148)(46,305)(47,261)(48,262)(49,170)(50,285)(51,157)(52,266)(53,168)(54,121)(55,138)(57,337)(58,144)(59,65)(60,342)(61,228)(62,233)(63,240)(64,98)(66,141)(67,277)(68,321)(69,197)(70,296)(71,325)(72,270)(73,218)(74,172)(75,345)(76,364)(77,247)(78,212)(79,152)(82,113)(83,147)(84,217)(85,119)(86,103)(87,346)(88,92)(89,354)(91,165)(93,265)(94,158)(95,273)(96,180)(97,227)(99,177)(101,236)(102,245)(105,281)(106,306)(109,309)(110,133)(114,336)(115,242)(116,291)(117,146)(118,295)(120,160)(122,241)(125,130)(126,140)(127,229)(128,331)(131,149)(136,155)(137,269)(139,186)(142,292)(143,275)(145,268)(151,169)(156,256)(159,347)(161,167)(162,237)(163,318)(166,280)(171,350)(175,199)(176,294)(178,184)(179,239)(181,201)(182,310)(183,189)(185,205)(187,221)(192,288)(194,206)(196,232)(198,207)(200,231)(202,213)(204,238)(208,290)(209,243)(210,260)(211,282)(214,264)(215,323)(216,313)(219,312)(220,324)(222,249)(226,253)(230,293)(234,314)(248,283)(254,279)(257,361)(259,278)(267,335)(271,340)(274,330)(276,338)(284,349)(286,327)(289,299)(297,363)(298,334)(304,362)(315,351)(317,360)(320,356)(326,343) );
 
Copy content sage:G = PermutationGroup(['(1,17,143,138,267,69,72,197,272,278,82,253,6,3,2)(4,5,19,223,222)(7,289,303,39,53,68,101,269,183,349,171,188,189,182,50)(8,310,314,100,216,59,274,287,227,174,74,324,67,350,170)(9,275,342,245,44,276,246,331,265,61,347,113,130,48,306)(10,177,163,37,120,234,355,137,221,293,346,273,220,268,353)(11,316,256,134,202)(12,363,87,231,70,299,191,277,46,112,239,99,111,213,326)(13,83,357,215,71)(14,255,136,38,203,152,107,47,122,257,26,145,281,290,126)(15,325,335,356,58,73,327,129,271,364,81,266,201,36,51)(16,43,65,248,282)(18,218,318,184,233,27,55,150,291,86,187,154,94,260,251)(20,166,180,270,62,280,258,146,309,108,24,133,307,261,322)(21,117,41,323,304,232,132,135,205,292,42,124,103,35,344)(22,175,321,259,161,96,288,179,181,224,301,198,89,332,296)(23,317,359,142,153)(25,63,200,195,127)(28,109,308,264,110,351,337,167,240,140,176,119,343,219,345)(29,169,199,148,116)(30,283,77,330,361,186,84,165,158,336,80,263,229,33,34)(31,294,340,92,312)(32,90,147,212,247)(40,206,54,217,141)(45,131,159,60,193)(49,56,328,279,285)(52,156,286,157,320)(57,121,297,243,85,105,115,95,194,155,226,302,250,249,300)(64,228,334,102,98)(75,97,78,211,237,235,236,118,360,352,114,354,204,341,139)(76,208,149,173,254)(79,358,225,125,214)(88,164,196,311,284)(91,338,207,190,93)(104,362,295,151,230)(106,315,252,333,262)(123,178,192,144,348)(128,238,329,185,210)(160,305,242,168,209)(162,319,244)(172,298,313,339,241)', '(7,188)(8,311)(9,358)(11,353)(12,100)(13,21)(14,104)(15,272)(16,174)(17,300)(19,302)(20,235)(22,132)(23,263)(24,203)(25,344)(26,173)(27,255)(28,339)(29,195)(30,244)(31,193)(32,357)(33,303)(34,258)(35,56)(36,123)(38,333)(39,150)(40,341)(41,322)(42,190)(44,329)(45,148)(46,305)(47,261)(48,262)(49,170)(50,285)(51,157)(52,266)(53,168)(54,121)(55,138)(57,337)(58,144)(59,65)(60,342)(61,228)(62,233)(63,240)(64,98)(66,141)(67,277)(68,321)(69,197)(70,296)(71,325)(72,270)(73,218)(74,172)(75,345)(76,364)(77,247)(78,212)(79,152)(82,113)(83,147)(84,217)(85,119)(86,103)(87,346)(88,92)(89,354)(91,165)(93,265)(94,158)(95,273)(96,180)(97,227)(99,177)(101,236)(102,245)(105,281)(106,306)(109,309)(110,133)(114,336)(115,242)(116,291)(117,146)(118,295)(120,160)(122,241)(125,130)(126,140)(127,229)(128,331)(131,149)(136,155)(137,269)(139,186)(142,292)(143,275)(145,268)(151,169)(156,256)(159,347)(161,167)(162,237)(163,318)(166,280)(171,350)(175,199)(176,294)(178,184)(179,239)(181,201)(182,310)(183,189)(185,205)(187,221)(192,288)(194,206)(196,232)(198,207)(200,231)(202,213)(204,238)(208,290)(209,243)(210,260)(211,282)(214,264)(215,323)(216,313)(219,312)(220,324)(222,249)(226,253)(230,293)(234,314)(248,283)(254,279)(257,361)(259,278)(267,335)(271,340)(274,330)(276,338)(284,349)(286,327)(289,299)(297,363)(298,334)(304,362)(315,351)(317,360)(320,356)(326,343)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\Sp(6,3)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 2 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\PSp(6,3)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $Q_8^2:C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^6:\He_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $74 \times 74$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $49 \times 49$ rational character table.