Properties

Label 3265920.a
Order \( 2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{6} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $112$
Trans deg. $112$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := PSU(4, 3);
 
Copy content gap:G := PSU(4, 3);
 
Copy content comment:Define the group as a permutation group
 
Copy content sage:G = PermutationGroup(['(1,3,7,12,20,32,45,64,89)(2,5,11,18,30,43,62,87,106)(4,9,6,13,21,33,46,65,91)(8,14,23,37,53,31,44,63,88)(10,16,26,29,34,47,66,92,102)(15,24,38,54,78,79,59,82,76)(17,28,42,60,84,96,90,107,94)(19,22,35,49,69,81,48,68,93)(25,39,56,80,103,55,36,51,73)(40,57,61,52,75,101,70,95,108)(41,58,67,83,104,86,105,77,99)(50,71,97,109,111,112,110,74,100)(72,98,85)', '(1,2,4,8)(3,6,12,19)(5,10)(7,9,15,13)(11,17,27,41)(14,22,34,24)(16,25,26,40)(18,29)(20,31,21,30)(23,36,50,70)(28,39,55,79)(32,42,59,38)(33,35,48,67)(37,52,74,80)(43,61,85,56)(44,47)(45,60,83,46)(49,68,91,107)(51,72,95,106)(53,76,102,93)(54,77,89,82)(57,58,81,101)(62,86,71,96)(63,66)(64,65,90,105)(69,94,108,75)(73,99,78,103)(84,87,104,110)(88,92)(98,100)'])
 

Group information

Description:$\PSU(4,3)$
Order: \(3265920\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\PGammaU(4,3)$, of order \(26127360\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\PSU(4,3)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 12
Elements 1 2835 47600 238140 653184 226800 933120 408240 483840 272160 3265920
Conjugacy classes   1 1 4 2 1 3 2 1 4 1 20
Divisions 1 1 4 2 1 3 1 1 2 1 17
Autjugacy classes 1 1 3 2 1 2 1 1 1 1 14

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 21 35 90 140 189 210 280 315 420 560 640 729 896 1280
Irr. complex chars.   1 1 2 1 1 1 1 4 2 1 1 2 1 1 0 20
Irr. rational chars. 1 1 2 1 1 1 1 0 2 1 3 0 1 1 1 17

Minimal presentations

Permutation degree:$112$
Transitive degree:$112$
Rank: $2$
Inequivalent generating pairs: $390255$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 21 21 21
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\PSU(4,3)$, $\POmegaMinus(6,3)$
Permutation group:Degree $112$ $\langle(1,3,7,12,20,32,45,64,89)(2,5,11,18,30,43,62,87,106)(4,9,6,13,21,33,46,65,91) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 112 | (1,3,7,12,20,32,45,64,89)(2,5,11,18,30,43,62,87,106)(4,9,6,13,21,33,46,65,91)(8,14,23,37,53,31,44,63,88)(10,16,26,29,34,47,66,92,102)(15,24,38,54,78,79,59,82,76)(17,28,42,60,84,96,90,107,94)(19,22,35,49,69,81,48,68,93)(25,39,56,80,103,55,36,51,73)(40,57,61,52,75,101,70,95,108)(41,58,67,83,104,86,105,77,99)(50,71,97,109,111,112,110,74,100)(72,98,85), (1,2,4,8)(3,6,12,19)(5,10)(7,9,15,13)(11,17,27,41)(14,22,34,24)(16,25,26,40)(18,29)(20,31,21,30)(23,36,50,70)(28,39,55,79)(32,42,59,38)(33,35,48,67)(37,52,74,80)(43,61,85,56)(44,47)(45,60,83,46)(49,68,91,107)(51,72,95,106)(53,76,102,93)(54,77,89,82)(57,58,81,101)(62,86,71,96)(63,66)(64,65,90,105)(69,94,108,75)(73,99,78,103)(84,87,104,110)(88,92)(98,100) >;
 
Copy content gap:G := Group( (1,3,7,12,20,32,45,64,89)(2,5,11,18,30,43,62,87,106)(4,9,6,13,21,33,46,65,91)(8,14,23,37,53,31,44,63,88)(10,16,26,29,34,47,66,92,102)(15,24,38,54,78,79,59,82,76)(17,28,42,60,84,96,90,107,94)(19,22,35,49,69,81,48,68,93)(25,39,56,80,103,55,36,51,73)(40,57,61,52,75,101,70,95,108)(41,58,67,83,104,86,105,77,99)(50,71,97,109,111,112,110,74,100)(72,98,85), (1,2,4,8)(3,6,12,19)(5,10)(7,9,15,13)(11,17,27,41)(14,22,34,24)(16,25,26,40)(18,29)(20,31,21,30)(23,36,50,70)(28,39,55,79)(32,42,59,38)(33,35,48,67)(37,52,74,80)(43,61,85,56)(44,47)(45,60,83,46)(49,68,91,107)(51,72,95,106)(53,76,102,93)(54,77,89,82)(57,58,81,101)(62,86,71,96)(63,66)(64,65,90,105)(69,94,108,75)(73,99,78,103)(84,87,104,110)(88,92)(98,100) );
 
Copy content sage:G = PermutationGroup(['(1,3,7,12,20,32,45,64,89)(2,5,11,18,30,43,62,87,106)(4,9,6,13,21,33,46,65,91)(8,14,23,37,53,31,44,63,88)(10,16,26,29,34,47,66,92,102)(15,24,38,54,78,79,59,82,76)(17,28,42,60,84,96,90,107,94)(19,22,35,49,69,81,48,68,93)(25,39,56,80,103,55,36,51,73)(40,57,61,52,75,101,70,95,108)(41,58,67,83,104,86,105,77,99)(50,71,97,109,111,112,110,74,100)(72,98,85)', '(1,2,4,8)(3,6,12,19)(5,10)(7,9,15,13)(11,17,27,41)(14,22,34,24)(16,25,26,40)(18,29)(20,31,21,30)(23,36,50,70)(28,39,55,79)(32,42,59,38)(33,35,48,67)(37,52,74,80)(43,61,85,56)(44,47)(45,60,83,46)(49,68,91,107)(51,72,95,106)(53,76,102,93)(54,77,89,82)(57,58,81,101)(62,86,71,96)(63,66)(64,65,90,105)(69,94,108,75)(73,99,78,103)(84,87,104,110)(88,92)(98,100)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SU(4,3)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{3} \times C_{12}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 10009764 subgroups in 381 conjugacy classes, 2 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $\PSU(4,3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\PSU(4,3)$ $G/G' \simeq$ $C_1$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $\PSU(4,3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_1$ $G/\operatorname{Fit} \simeq$ $\PSU(4,3)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_1$ $G/R \simeq$ $\PSU(4,3)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $\PSU(4,3)$ $G/\operatorname{soc} \simeq$ $C_1$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^2:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4:C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $\PSU(4,3)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $\PSU(4,3)$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $\PSU(4,3)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $20 \times 20$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $17 \times 17$ rational character table.