Properties

Label 32440320.a
Order \( 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent \( 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (3,17,11,20,23,4,18,12,19,24)(5,10,21,13,15)(6,9,22,14,16), (1,24,10,7,5,13)(2,23,9,8,6,14)(11,16,12,15)(17,21,20)(18,22,19) >;
 
Copy content gap:G := Group( (3,17,11,20,23,4,18,12,19,24)(5,10,21,13,15)(6,9,22,14,16), (1,24,10,7,5,13)(2,23,9,8,6,14)(11,16,12,15)(17,21,20)(18,22,19) );
 
Copy content sage:G = PermutationGroup(['(3,17,11,20,23,4,18,12,19,24)(5,10,21,13,15)(6,9,22,14,16)', '(1,24,10,7,5,13)(2,23,9,8,6,14)(11,16,12,15)(17,21,20)(18,22,19)'])
 

Group information

Description:$C_2^{12}.M_{11}$
Order: \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^{12}.M_{11}$, of order \(32440320\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 5 \cdot 11 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $M_{11}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 11 12 16 22
Elements 1 46335 28160 1647360 405504 3125760 7096320 6082560 1474560 4055040 4055040 4423680 32440320
Conjugacy classes   1 23 1 33 1 27 11 15 2 12 4 6 136
Divisions 1 23 1 33 1 27 9 9 1 12 2 3 122
Autjugacy classes 1 18 1 26 1 20 11 11 2 9 4 4 108

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $24$ $\langle(3,17,11,20,23,4,18,12,19,24)(5,10,21,13,15)(6,9,22,14,16), (1,24,10,7,5,13)(2,23,9,8,6,14)(11,16,12,15)(17,21,20)(18,22,19)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (3,17,11,20,23,4,18,12,19,24)(5,10,21,13,15)(6,9,22,14,16), (1,24,10,7,5,13)(2,23,9,8,6,14)(11,16,12,15)(17,21,20)(18,22,19) >;
 
Copy content gap:G := Group( (3,17,11,20,23,4,18,12,19,24)(5,10,21,13,15)(6,9,22,14,16), (1,24,10,7,5,13)(2,23,9,8,6,14)(11,16,12,15)(17,21,20)(18,22,19) );
 
Copy content sage:G = PermutationGroup(['(3,17,11,20,23,4,18,12,19,24)(5,10,21,13,15)(6,9,22,14,16)', '(1,24,10,7,5,13)(2,23,9,8,6,14)(11,16,12,15)(17,21,20)(18,22,19)'])
 
Transitive group: 24T24338 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{12}$ . $M_{11}$ $(C_2^{11}.M_{11})$ . $C_2$ $C_2^{11}$ . $(C_2\times M_{11})$ $C_2$ . $(C_2^{11}.M_{11})$ more information

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 6 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^{11}.M_{11}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^{11}.M_{11}$ $G/G' \simeq$ $C_2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^{11}$ $G/\Phi \simeq$ $C_2\times M_{11}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{12}$ $G/\operatorname{Fit} \simeq$ $M_{11}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^{12}$ $G/R \simeq$ $M_{11}$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $C_2^{11}.M_{11}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^5.C_2^4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$

Subgroup diagram and profile

Series

Derived series $C_2^{12}.M_{11}$ $\rhd$ $C_2^{11}.M_{11}$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^{12}.M_{11}$ $\rhd$ $C_2^{12}$ $\rhd$ $C_2^{11}$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^{12}.M_{11}$ $\rhd$ $C_2^{11}.M_{11}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $136 \times 136$ character table is not available for this group.

Rational character table

The $122 \times 122$ rational character table is not available for this group.