Properties

Label 297411240.a
Order \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 421 \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 421 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 421 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $842$
Trans deg. $842$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := PSL(2, 841);
 
Copy content gap:G := PSL(2, 841);
 
Copy content sage:G = PSL(2, 841)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\PSL(2,841)$
Order: \(297411240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 421 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(5127780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 421 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1189644960\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2} \cdot 421 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\PSL(2,841)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 10 12 14 15 20 21 28 29 30 35 42 60 70 84 105 140 210 420 421
Elements 1 354061 708122 708122 1416244 708122 2124366 1416244 1416244 2124366 2832488 2832488 4248732 4248732 707280 2832488 8497464 4248732 5664976 8497464 8497464 16994928 16994928 16994928 33989856 148352400 297411240
Conjugacy classes   1 1 1 1 2 1 3 2 2 3 4 4 6 6 2 4 12 6 8 12 12 24 24 24 48 210 423
Divisions 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 27

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 421 840 841 842 1684 2526 3368 5052 6736 10104 20208 40416 176400
Irr. complex chars.   1 2 210 1 209 0 0 0 0 0 0 0 0 0 423
Irr. rational chars. 1 2 0 1 3 3 2 3 3 1 3 3 1 1 27

Minimal presentations

Permutation degree:$842$
Transitive degree:$842$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 421 421 421
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\PSL(2,841)$, $\PSU(2,841)$, $\Omega(3,841)$, $\OmegaMinus(4,29)$, $\PSOMinus(4,29)$, $\POmega(3,841)$, $\POmegaMinus(4,29)$
Permutation group:Degree $842$ $\langle(3,699,513,791,614,706,136,727,318,296,277,786,259,690,827,423,763,736,783,779,214,95,535,52,837,410,534,163,735,176,399,48,456,152,280,13,161,469,375,184,405,315,710,587,657,672,573,94,431,235,498,76,659,388,299,665,701,83,78,108,261,722,5,460,354,358,210,497,448,213,242,208,802,287,814,585,217,257,282,719,438,211,346,27,702,98,507,811,220,566,234,72,329,182,172,554,790,464,232,734,525,474,289,205,177,716,760,58,540,608,252,47,803,247,253,50,553,319,97,655,138,194,433,4,22,785,571,829,53,403,245,84,415,170,101,368,26,741,476,809,171,264,63,490,378,224,124,609,353,510,130,156,509,463,426,642,677,493,649,68,132,218,327,197,317,688,343,394,178,813,71,165,326,395,560,740,283,119,209,70,612,294,503,462,179,424,416,86,379,567,202,486,796,96,193,753,479,420,515,626,418,816,771,664,309,835,597,459,650,703,805,28,678,732,545,302,147,321,151,266,200,112,576,452,38,373,712,615,676,616,617,449,434,443,541,532,64,251,653,454,708,80,185,441,658,239,485,246,578,201,810,757,6,250,134,730,46,11,23,164,12,569,544,30,561,107,596,572,743,44,158,73,580,574,61,685,117,19,339,159,461,683,618,290,303,174,662,512,275,25,550,483,255,453,222,481,654,831,20,717,647,836,475,523,755,334,828,131,501,494,742,390,589,488,363,116,437,39,312,758,150,226,293,406,21,700,838,696,770,77,199,204,620,830,122,522,605,297,557,263,417,45,577,436,575,93,153,81,630,601,604,238,444,517,281,471,514,262,307,365,473,254,120,33,166,432,65,356,508,349,697,602,624,504,206,447,37,776,286,778,325,377,788,745,670,99,739,316,633,445,478,622,298,189,500,306,51,704,24,340,718,380,724,731,89,41,458,216,766,154,531,638,789,521,361,537,91,495,720,140) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 842 | (3,699,513,791,614,706,136,727,318,296,277,786,259,690,827,423,763,736,783,779,214,95,535,52,837,410,534,163,735,176,399,48,456,152,280,13,161,469,375,184,405,315,710,587,657,672,573,94,431,235,498,76,659,388,299,665,701,83,78,108,261,722,5,460,354,358,210,497,448,213,242,208,802,287,814,585,217,257,282,719,438,211,346,27,702,98,507,811,220,566,234,72,329,182,172,554,790,464,232,734,525,474,289,205,177,716,760,58,540,608,252,47,803,247,253,50,553,319,97,655,138,194,433,4,22,785,571,829,53,403,245,84,415,170,101,368,26,741,476,809,171,264,63,490,378,224,124,609,353,510,130,156,509,463,426,642,677,493,649,68,132,218,327,197,317,688,343,394,178,813,71,165,326,395,560,740,283,119,209,70,612,294,503,462,179,424,416,86,379,567,202,486,796,96,193,753,479,420,515,626,418,816,771,664,309,835,597,459,650,703,805,28,678,732,545,302,147,321,151,266,200,112,576,452,38,373,712,615,676,616,617,449,434,443,541,532,64,251,653,454,708,80,185,441,658,239,485,246,578,201,810,757,6,250,134,730,46,11,23,164,12,569,544,30,561,107,596,572,743,44,158,73,580,574,61,685,117,19,339,159,461,683,618,290,303,174,662,512,275,25,550,483,255,453,222,481,654,831,20,717,647,836,475,523,755,334,828,131,501,494,742,390,589,488,363,116,437,39,312,758,150,226,293,406,21,700,838,696,770,77,199,204,620,830,122,522,605,297,557,263,417,45,577,436,575,93,153,81,630,601,604,238,444,517,281,471,514,262,307,365,473,254,120,33,166,432,65,356,508,349,697,602,624,504,206,447,37,776,286,778,325,377,788,745,670,99,739,316,633,445,478,622,298,189,500,306,51,704,24,340,718,380,724,731,89,41,458,216,766,154,531,638,789,521,361,537,91,495,720,140)(7,145,824,439,552,619,695,87,533,806,408,729,482,357,256,455,103,351,344,714,17,511,90,322,370,9,198,128,825,14,191,364,623,392,590,362,295,820,570,333,183,671,542,555,227,162,384,686,506,826,728,160,784,271,265,772,687,801,102,273,249,738,284,815,301,276,833,681,822,834,799,115,711,595,839,88,35,644,267,599,360,606,187,404,660,765,137,391,192,594,781,313,304,402,411,396,228,229,169,230,133,472,807,393,269,733,645,579,694,524,698,543,300,113,167,817,40,142,195,386,248,10,536,181,74,29,427,219,330,425,366,92,652,749,49,359,643,278,466,759,429,421,666,383,342,551,233,775,636,726,562,105,285,450,519,680,774,32,667,451,502,157,528,648,518,627,713,777,196,352,168,203,419,382,336,689,715,335,492,236,721,621,467,355,782,581,674,36,369,104,819,477,744,675,430,761,600,442,792,16,274,60,823,841,412,651,707,190,748,526,292,795,592,598,42,798,593,237,305,787,85,129,668,640,556,371,320,111,613,381,55,291,673,663,516,773,611,279,625,34,338,747,143,818,499,634,407,126,563,588,628,260,31,558,43,637,603,632,397,348,635,487,491,385,840,123,584,737,767,762,144,180,546,457,186,769,347,610,414,751,272,173,188,258,135,530,440,661,470,376,684,832,565,693,389,797,446,669,110,682,311,435,8,793,310,750,631,66,62,109,82,422,18,155,586,59,568,549,527,118,709,139,231,54,332,146,842,705,125,350,754,308,484,324,56,207,314,691,79,629,387,804,756,114,121,465,127,505,821,141,794,539,345,656,547,223,367,400,212,529,106,746,175,100,57,468,520,67,559,69,808,398,639,341,221,243,148,496,337,489,780,413,679,812,725,591,372,480,538,583,331,374,564,328,401,607,241,244,215,764,692,752,270,409,268,800,428,582,288,548,240,323,723,15,225,641,646,768,75,149), (1,443,2)(3,829,120)(4,680,231)(5,625,311)(6,244,398)(7,731,442)(8,189,146)(9,255,258)(10,565,86)(11,118,370)(12,624,19)(13,175,841)(14,655,623)(15,103,165)(16,415,762)(17,323,813)(18,138,196)(20,417,73)(21,369,192)(22,816,317)(23,742,45)(24,745,53)(25,114,538)(26,102,428)(27,448,557)(28,347,113)(29,81,330)(30,339,508)(31,287,769)(32,780,460)(33,755,185)(34,423,127)(35,504,105)(36,645,131)(37,662,246)(38,327,205)(39,839,526)(40,716,489)(41,215,237)(42,416,274)(43,777,70)(44,286,544)(46,225,794)(47,797,430)(48,79,291)(49,466,770)(50,386,520)(51,585,783)(52,578,151)(54,512,240)(55,740,761)(56,341,488)(57,256,576)(58,683,474)(59,294,269)(60,357,739)(61,441,298)(62,122,337)(63,834,583)(64,167,628)(65,706,97)(66,121,349)(67,826,179)(68,160,331)(69,382,78)(71,267,345)(72,609,757)(74,431,533)(75,684,589)(76,184,340)(77,408,487)(80,467,335)(82,587,126)(83,284,738)(84,459,156)(85,329,470)(87,94,427)(88,157,166)(89,610,629)(90,195,405)(91,110,631)(92,553,656)(93,781,627)(95,715,409)(96,708,701)(98,827,478)(99,372,588)(100,496,461)(101,226,280)(104,516,119)(106,236,722)(107,577,475)(108,454,486)(109,124,551)(111,648,805)(112,789,117)(115,513,579)(116,164,522)(123,548,153)(125,477,211)(128,439,130)(129,313,275)(132,348,621)(133,638,594)(134,276,173)(135,669,779)(136,333,359)(137,728,657)(139,262,756)(140,562,364)(141,207,605)(142,668,569)(143,613,245)(144,464,663)(145,450,534)(147,457,543)(148,438,342)(149,809,542)(150,767,482)(152,821,787)(154,228,396)(155,710,634)(158,580,356)(159,530,295)(161,210,316)(162,815,802)(163,272,693)(168,506,788)(169,596,611)(170,838,399)(171,830,763)(172,597,567)(174,491,271)(176,434,676)(177,263,573)(178,753,571)(180,751,498)(181,468,803)(182,606,695)(183,835,223)(186,270,575)(187,289,646)(188,471,812)(190,561,425)(191,507,301)(193,479,734)(194,723,681)(198,556,604)(199,203,230)(200,334,670)(201,283,354)(202,299,239)(204,616,601)(206,400,376)(208,666,480)(209,833,367)(212,381,690)(213,529,419)(214,552,774)(216,685,615)(217,456,377)(218,485,346)(219,402,325)(220,420,309)(221,798,786)(222,811,540)(224,620,259)(227,435,730)(229,546,449)(232,379,664)(233,312,643)(234,266,612)(235,502,374)(238,795,570)(241,527,828)(242,735,622)(243,595,509)(247,406,388)(248,725,790)(249,532,750)(250,391,635)(251,368,319)(252,539,759)(253,640,385)(254,671,792)(257,744,308)(260,782,688)(261,636,564)(264,503,343)(265,743,414)(268,748,766)(273,804,418)(277,719,718)(278,831,713)(279,659,422)(281,592,590)(282,572,378)(285,493,832)(288,355,296)(290,765,673)(292,618,694)(293,626,633)(297,686,593)(300,500,411)(302,758,447)(303,700,647)(304,678,446)(305,704,800)(306,819,455)(307,778,326)(310,810,384)(314,473,332)(315,525,630)(318,501,395)(320,514,344)(321,724,550)(322,476,714)(324,492,566)(328,842,836)(336,752,410)(338,651,642)(350,602,709)(351,699,528)(352,469,401)(353,729,511)(358,360,362)(361,387,584)(363,660,823)(365,432,424)(366,437,519)(371,599,654)(373,692,607)(375,453,649)(380,536,644)(383,598,658)(389,560,652)(390,639,691)(392,726,720)(393,682,515)(394,784,413)(397,703,749)(403,746,698)(404,510,559)(407,591,445)(412,818,463)(421,518,481)(426,661,451)(429,641,672)(433,689,793)(436,637,824)(440,494,619)(444,586,547)(452,796,814)(458,581,806)(462,465,711)(472,772,837)(483,505,679)(484,614,840)(490,517,521)(495,674,768)(497,727,537)(499,776,764)(524,582,702)(531,712,574)(535,807,687)(541,736,653)(545,707,721)(549,799,732)(554,563,632)(555,617,705)(558,760,747)(568,775,741)(600,733,717)(603,773,608)(650,785,677)(665,801,822)(667,817,696)(675,820,697)(737,754,791)(771,808,825) >;
 
Copy content gap:G := Group( (3,699,513,791,614,706,136,727,318,296,277,786,259,690,827,423,763,736,783,779,214,95,535,52,837,410,534,163,735,176,399,48,456,152,280,13,161,469,375,184,405,315,710,587,657,672,573,94,431,235,498,76,659,388,299,665,701,83,78,108,261,722,5,460,354,358,210,497,448,213,242,208,802,287,814,585,217,257,282,719,438,211,346,27,702,98,507,811,220,566,234,72,329,182,172,554,790,464,232,734,525,474,289,205,177,716,760,58,540,608,252,47,803,247,253,50,553,319,97,655,138,194,433,4,22,785,571,829,53,403,245,84,415,170,101,368,26,741,476,809,171,264,63,490,378,224,124,609,353,510,130,156,509,463,426,642,677,493,649,68,132,218,327,197,317,688,343,394,178,813,71,165,326,395,560,740,283,119,209,70,612,294,503,462,179,424,416,86,379,567,202,486,796,96,193,753,479,420,515,626,418,816,771,664,309,835,597,459,650,703,805,28,678,732,545,302,147,321,151,266,200,112,576,452,38,373,712,615,676,616,617,449,434,443,541,532,64,251,653,454,708,80,185,441,658,239,485,246,578,201,810,757,6,250,134,730,46,11,23,164,12,569,544,30,561,107,596,572,743,44,158,73,580,574,61,685,117,19,339,159,461,683,618,290,303,174,662,512,275,25,550,483,255,453,222,481,654,831,20,717,647,836,475,523,755,334,828,131,501,494,742,390,589,488,363,116,437,39,312,758,150,226,293,406,21,700,838,696,770,77,199,204,620,830,122,522,605,297,557,263,417,45,577,436,575,93,153,81,630,601,604,238,444,517,281,471,514,262,307,365,473,254,120,33,166,432,65,356,508,349,697,602,624,504,206,447,37,776,286,778,325,377,788,745,670,99,739,316,633,445,478,622,298,189,500,306,51,704,24,340,718,380,724,731,89,41,458,216,766,154,531,638,789,521,361,537,91,495,720,140)(7,145,824,439,552,619,695,87,533,806,408,729,482,357,256,455,103,351,344,714,17,511,90,322,370,9,198,128,825,14,191,364,623,392,590,362,295,820,570,333,183,671,542,555,227,162,384,686,506,826,728,160,784,271,265,772,687,801,102,273,249,738,284,815,301,276,833,681,822,834,799,115,711,595,839,88,35,644,267,599,360,606,187,404,660,765,137,391,192,594,781,313,304,402,411,396,228,229,169,230,133,472,807,393,269,733,645,579,694,524,698,543,300,113,167,817,40,142,195,386,248,10,536,181,74,29,427,219,330,425,366,92,652,749,49,359,643,278,466,759,429,421,666,383,342,551,233,775,636,726,562,105,285,450,519,680,774,32,667,451,502,157,528,648,518,627,713,777,196,352,168,203,419,382,336,689,715,335,492,236,721,621,467,355,782,581,674,36,369,104,819,477,744,675,430,761,600,442,792,16,274,60,823,841,412,651,707,190,748,526,292,795,592,598,42,798,593,237,305,787,85,129,668,640,556,371,320,111,613,381,55,291,673,663,516,773,611,279,625,34,338,747,143,818,499,634,407,126,563,588,628,260,31,558,43,637,603,632,397,348,635,487,491,385,840,123,584,737,767,762,144,180,546,457,186,769,347,610,414,751,272,173,188,258,135,530,440,661,470,376,684,832,565,693,389,797,446,669,110,682,311,435,8,793,310,750,631,66,62,109,82,422,18,155,586,59,568,549,527,118,709,139,231,54,332,146,842,705,125,350,754,308,484,324,56,207,314,691,79,629,387,804,756,114,121,465,127,505,821,141,794,539,345,656,547,223,367,400,212,529,106,746,175,100,57,468,520,67,559,69,808,398,639,341,221,243,148,496,337,489,780,413,679,812,725,591,372,480,538,583,331,374,564,328,401,607,241,244,215,764,692,752,270,409,268,800,428,582,288,548,240,323,723,15,225,641,646,768,75,149), (1,443,2)(3,829,120)(4,680,231)(5,625,311)(6,244,398)(7,731,442)(8,189,146)(9,255,258)(10,565,86)(11,118,370)(12,624,19)(13,175,841)(14,655,623)(15,103,165)(16,415,762)(17,323,813)(18,138,196)(20,417,73)(21,369,192)(22,816,317)(23,742,45)(24,745,53)(25,114,538)(26,102,428)(27,448,557)(28,347,113)(29,81,330)(30,339,508)(31,287,769)(32,780,460)(33,755,185)(34,423,127)(35,504,105)(36,645,131)(37,662,246)(38,327,205)(39,839,526)(40,716,489)(41,215,237)(42,416,274)(43,777,70)(44,286,544)(46,225,794)(47,797,430)(48,79,291)(49,466,770)(50,386,520)(51,585,783)(52,578,151)(54,512,240)(55,740,761)(56,341,488)(57,256,576)(58,683,474)(59,294,269)(60,357,739)(61,441,298)(62,122,337)(63,834,583)(64,167,628)(65,706,97)(66,121,349)(67,826,179)(68,160,331)(69,382,78)(71,267,345)(72,609,757)(74,431,533)(75,684,589)(76,184,340)(77,408,487)(80,467,335)(82,587,126)(83,284,738)(84,459,156)(85,329,470)(87,94,427)(88,157,166)(89,610,629)(90,195,405)(91,110,631)(92,553,656)(93,781,627)(95,715,409)(96,708,701)(98,827,478)(99,372,588)(100,496,461)(101,226,280)(104,516,119)(106,236,722)(107,577,475)(108,454,486)(109,124,551)(111,648,805)(112,789,117)(115,513,579)(116,164,522)(123,548,153)(125,477,211)(128,439,130)(129,313,275)(132,348,621)(133,638,594)(134,276,173)(135,669,779)(136,333,359)(137,728,657)(139,262,756)(140,562,364)(141,207,605)(142,668,569)(143,613,245)(144,464,663)(145,450,534)(147,457,543)(148,438,342)(149,809,542)(150,767,482)(152,821,787)(154,228,396)(155,710,634)(158,580,356)(159,530,295)(161,210,316)(162,815,802)(163,272,693)(168,506,788)(169,596,611)(170,838,399)(171,830,763)(172,597,567)(174,491,271)(176,434,676)(177,263,573)(178,753,571)(180,751,498)(181,468,803)(182,606,695)(183,835,223)(186,270,575)(187,289,646)(188,471,812)(190,561,425)(191,507,301)(193,479,734)(194,723,681)(198,556,604)(199,203,230)(200,334,670)(201,283,354)(202,299,239)(204,616,601)(206,400,376)(208,666,480)(209,833,367)(212,381,690)(213,529,419)(214,552,774)(216,685,615)(217,456,377)(218,485,346)(219,402,325)(220,420,309)(221,798,786)(222,811,540)(224,620,259)(227,435,730)(229,546,449)(232,379,664)(233,312,643)(234,266,612)(235,502,374)(238,795,570)(241,527,828)(242,735,622)(243,595,509)(247,406,388)(248,725,790)(249,532,750)(250,391,635)(251,368,319)(252,539,759)(253,640,385)(254,671,792)(257,744,308)(260,782,688)(261,636,564)(264,503,343)(265,743,414)(268,748,766)(273,804,418)(277,719,718)(278,831,713)(279,659,422)(281,592,590)(282,572,378)(285,493,832)(288,355,296)(290,765,673)(292,618,694)(293,626,633)(297,686,593)(300,500,411)(302,758,447)(303,700,647)(304,678,446)(305,704,800)(306,819,455)(307,778,326)(310,810,384)(314,473,332)(315,525,630)(318,501,395)(320,514,344)(321,724,550)(322,476,714)(324,492,566)(328,842,836)(336,752,410)(338,651,642)(350,602,709)(351,699,528)(352,469,401)(353,729,511)(358,360,362)(361,387,584)(363,660,823)(365,432,424)(366,437,519)(371,599,654)(373,692,607)(375,453,649)(380,536,644)(383,598,658)(389,560,652)(390,639,691)(392,726,720)(393,682,515)(394,784,413)(397,703,749)(403,746,698)(404,510,559)(407,591,445)(412,818,463)(421,518,481)(426,661,451)(429,641,672)(433,689,793)(436,637,824)(440,494,619)(444,586,547)(452,796,814)(458,581,806)(462,465,711)(472,772,837)(483,505,679)(484,614,840)(490,517,521)(495,674,768)(497,727,537)(499,776,764)(524,582,702)(531,712,574)(535,807,687)(541,736,653)(545,707,721)(549,799,732)(554,563,632)(555,617,705)(558,760,747)(568,775,741)(600,733,717)(603,773,608)(650,785,677)(665,801,822)(667,817,696)(675,820,697)(737,754,791)(771,808,825) );
 
Copy content sage:G = PermutationGroup(['(3,699,513,791,614,706,136,727,318,296,277,786,259,690,827,423,763,736,783,779,214,95,535,52,837,410,534,163,735,176,399,48,456,152,280,13,161,469,375,184,405,315,710,587,657,672,573,94,431,235,498,76,659,388,299,665,701,83,78,108,261,722,5,460,354,358,210,497,448,213,242,208,802,287,814,585,217,257,282,719,438,211,346,27,702,98,507,811,220,566,234,72,329,182,172,554,790,464,232,734,525,474,289,205,177,716,760,58,540,608,252,47,803,247,253,50,553,319,97,655,138,194,433,4,22,785,571,829,53,403,245,84,415,170,101,368,26,741,476,809,171,264,63,490,378,224,124,609,353,510,130,156,509,463,426,642,677,493,649,68,132,218,327,197,317,688,343,394,178,813,71,165,326,395,560,740,283,119,209,70,612,294,503,462,179,424,416,86,379,567,202,486,796,96,193,753,479,420,515,626,418,816,771,664,309,835,597,459,650,703,805,28,678,732,545,302,147,321,151,266,200,112,576,452,38,373,712,615,676,616,617,449,434,443,541,532,64,251,653,454,708,80,185,441,658,239,485,246,578,201,810,757,6,250,134,730,46,11,23,164,12,569,544,30,561,107,596,572,743,44,158,73,580,574,61,685,117,19,339,159,461,683,618,290,303,174,662,512,275,25,550,483,255,453,222,481,654,831,20,717,647,836,475,523,755,334,828,131,501,494,742,390,589,488,363,116,437,39,312,758,150,226,293,406,21,700,838,696,770,77,199,204,620,830,122,522,605,297,557,263,417,45,577,436,575,93,153,81,630,601,604,238,444,517,281,471,514,262,307,365,473,254,120,33,166,432,65,356,508,349,697,602,624,504,206,447,37,776,286,778,325,377,788,745,670,99,739,316,633,445,478,622,298,189,500,306,51,704,24,340,718,380,724,731,89,41,458,216,766,154,531,638,789,521,361,537,91,495,720,140)(7,145,824,439,552,619,695,87,533,806,408,729,482,357,256,455,103,351,344,714,17,511,90,322,370,9,198,128,825,14,191,364,623,392,590,362,295,820,570,333,183,671,542,555,227,162,384,686,506,826,728,160,784,271,265,772,687,801,102,273,249,738,284,815,301,276,833,681,822,834,799,115,711,595,839,88,35,644,267,599,360,606,187,404,660,765,137,391,192,594,781,313,304,402,411,396,228,229,169,230,133,472,807,393,269,733,645,579,694,524,698,543,300,113,167,817,40,142,195,386,248,10,536,181,74,29,427,219,330,425,366,92,652,749,49,359,643,278,466,759,429,421,666,383,342,551,233,775,636,726,562,105,285,450,519,680,774,32,667,451,502,157,528,648,518,627,713,777,196,352,168,203,419,382,336,689,715,335,492,236,721,621,467,355,782,581,674,36,369,104,819,477,744,675,430,761,600,442,792,16,274,60,823,841,412,651,707,190,748,526,292,795,592,598,42,798,593,237,305,787,85,129,668,640,556,371,320,111,613,381,55,291,673,663,516,773,611,279,625,34,338,747,143,818,499,634,407,126,563,588,628,260,31,558,43,637,603,632,397,348,635,487,491,385,840,123,584,737,767,762,144,180,546,457,186,769,347,610,414,751,272,173,188,258,135,530,440,661,470,376,684,832,565,693,389,797,446,669,110,682,311,435,8,793,310,750,631,66,62,109,82,422,18,155,586,59,568,549,527,118,709,139,231,54,332,146,842,705,125,350,754,308,484,324,56,207,314,691,79,629,387,804,756,114,121,465,127,505,821,141,794,539,345,656,547,223,367,400,212,529,106,746,175,100,57,468,520,67,559,69,808,398,639,341,221,243,148,496,337,489,780,413,679,812,725,591,372,480,538,583,331,374,564,328,401,607,241,244,215,764,692,752,270,409,268,800,428,582,288,548,240,323,723,15,225,641,646,768,75,149)', '(1,443,2)(3,829,120)(4,680,231)(5,625,311)(6,244,398)(7,731,442)(8,189,146)(9,255,258)(10,565,86)(11,118,370)(12,624,19)(13,175,841)(14,655,623)(15,103,165)(16,415,762)(17,323,813)(18,138,196)(20,417,73)(21,369,192)(22,816,317)(23,742,45)(24,745,53)(25,114,538)(26,102,428)(27,448,557)(28,347,113)(29,81,330)(30,339,508)(31,287,769)(32,780,460)(33,755,185)(34,423,127)(35,504,105)(36,645,131)(37,662,246)(38,327,205)(39,839,526)(40,716,489)(41,215,237)(42,416,274)(43,777,70)(44,286,544)(46,225,794)(47,797,430)(48,79,291)(49,466,770)(50,386,520)(51,585,783)(52,578,151)(54,512,240)(55,740,761)(56,341,488)(57,256,576)(58,683,474)(59,294,269)(60,357,739)(61,441,298)(62,122,337)(63,834,583)(64,167,628)(65,706,97)(66,121,349)(67,826,179)(68,160,331)(69,382,78)(71,267,345)(72,609,757)(74,431,533)(75,684,589)(76,184,340)(77,408,487)(80,467,335)(82,587,126)(83,284,738)(84,459,156)(85,329,470)(87,94,427)(88,157,166)(89,610,629)(90,195,405)(91,110,631)(92,553,656)(93,781,627)(95,715,409)(96,708,701)(98,827,478)(99,372,588)(100,496,461)(101,226,280)(104,516,119)(106,236,722)(107,577,475)(108,454,486)(109,124,551)(111,648,805)(112,789,117)(115,513,579)(116,164,522)(123,548,153)(125,477,211)(128,439,130)(129,313,275)(132,348,621)(133,638,594)(134,276,173)(135,669,779)(136,333,359)(137,728,657)(139,262,756)(140,562,364)(141,207,605)(142,668,569)(143,613,245)(144,464,663)(145,450,534)(147,457,543)(148,438,342)(149,809,542)(150,767,482)(152,821,787)(154,228,396)(155,710,634)(158,580,356)(159,530,295)(161,210,316)(162,815,802)(163,272,693)(168,506,788)(169,596,611)(170,838,399)(171,830,763)(172,597,567)(174,491,271)(176,434,676)(177,263,573)(178,753,571)(180,751,498)(181,468,803)(182,606,695)(183,835,223)(186,270,575)(187,289,646)(188,471,812)(190,561,425)(191,507,301)(193,479,734)(194,723,681)(198,556,604)(199,203,230)(200,334,670)(201,283,354)(202,299,239)(204,616,601)(206,400,376)(208,666,480)(209,833,367)(212,381,690)(213,529,419)(214,552,774)(216,685,615)(217,456,377)(218,485,346)(219,402,325)(220,420,309)(221,798,786)(222,811,540)(224,620,259)(227,435,730)(229,546,449)(232,379,664)(233,312,643)(234,266,612)(235,502,374)(238,795,570)(241,527,828)(242,735,622)(243,595,509)(247,406,388)(248,725,790)(249,532,750)(250,391,635)(251,368,319)(252,539,759)(253,640,385)(254,671,792)(257,744,308)(260,782,688)(261,636,564)(264,503,343)(265,743,414)(268,748,766)(273,804,418)(277,719,718)(278,831,713)(279,659,422)(281,592,590)(282,572,378)(285,493,832)(288,355,296)(290,765,673)(292,618,694)(293,626,633)(297,686,593)(300,500,411)(302,758,447)(303,700,647)(304,678,446)(305,704,800)(306,819,455)(307,778,326)(310,810,384)(314,473,332)(315,525,630)(318,501,395)(320,514,344)(321,724,550)(322,476,714)(324,492,566)(328,842,836)(336,752,410)(338,651,642)(350,602,709)(351,699,528)(352,469,401)(353,729,511)(358,360,362)(361,387,584)(363,660,823)(365,432,424)(366,437,519)(371,599,654)(373,692,607)(375,453,649)(380,536,644)(383,598,658)(389,560,652)(390,639,691)(392,726,720)(393,682,515)(394,784,413)(397,703,749)(403,746,698)(404,510,559)(407,591,445)(412,818,463)(421,518,481)(426,661,451)(429,641,672)(433,689,793)(436,637,824)(440,494,619)(444,586,547)(452,796,814)(458,581,806)(462,465,711)(472,772,837)(483,505,679)(484,614,840)(490,517,521)(495,674,768)(497,727,537)(499,776,764)(524,582,702)(531,712,574)(535,807,687)(541,736,653)(545,707,721)(549,799,732)(554,563,632)(555,617,705)(558,760,747)(568,775,741)(600,733,717)(603,773,608)(650,785,677)(665,801,822)(667,817,696)(675,820,697)(737,754,791)(771,808,825)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not computed

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,841)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 349672921 subgroups in 111 conjugacy classes, 2 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\PSL(2,841)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
29-Sylow subgroup: $P_{ 29 } \simeq$ $C_{29}^2$
421-Sylow subgroup: $P_{ 421 } \simeq$ $C_{421}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $423 \times 423$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $27 \times 27$ rational character table.