Properties

Label 250...400.a
Order \( 2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 17 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{21} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $495$
Trans deg. $495$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := OmegaMinus(10,2);
 
Copy content comment:Define the group as a permutation group
 
Copy content gap:G := Group( (1,3,9,19,38,67,115,93,53,29,13,5)(2,6,14,30,54,94,156,95,55,31,15,7)(4,10,21,41,72,125,199,139,81,47,25,11)(8,16,32,56,96,157,192,121,104,61,35,17)(12,26,48,83,141,215,302,224,147,87,49,27)(18,36,63,108,173,256,348,260,178,112,65,37)(20,40,70,122,193,274,333,241,162,99,58,34)(22,42,73,126,200,282,332,240,161,98,57,33)(23,43,74,127,201,284,368,292,207,132,76,44)(24,45,77,133,208,293,374,294,209,134,78,46)(28,50,88,148,89,51)(39,68,118,189,271,357,445,358,273,191,120,69)(52,90,151,229,317,251,343,314,322,232,152,91)(59,100,82,140,138,80,137,213,299,244,164,101)(60,102,84,142,136,79,135,210,295,245,165,103)(62,105,169,219,144,85,143,216,304,252,170,106)(64,110,176,221,146,86,145,220,310,259,177,111)(66,113,180,263,184,114)(71,123,196,278,362,477,449,452,363,279,198,124)(75,129,203,286,275,360,446,342,250,168,204,130)(92,153,233,323,399,331,464,457,400,324,234,154)(97,158,128,202,285,361,277,194,276,328,236,159)(107,171,254,346,470,484,448,428,474,347,255,172)(109,174,257,349,413,415,472,482,408,350,258,175)(116,186,238,160,237,290,206,131,205,289,269,187)(117,188,270,195,228,150,227,316,391,355,267,183)(119,190,272,197,226,149,225,313,390,354,266,182)(155,235,325,401,479,409,435,438,494,378,300,214)(163,242,334,436,338,466,459,431,488,404,335,243)(166,246,337,410,372,288,371,422,460,493,339,247)(167,248,340,451,370,287,369,411,414,439,341,249)(179,261,281,365,380,301,379,327,405,433,352,262)(181,264,280,364,382,303,381,326,462,403,353,265)(185,212,298,377,425,450,424,426,492,461,356,268)(211,296,375,480,402,456,471,478,458,392,376,297)(217,305,383,481,485,387,309,386,430,487,384,306)(218,307,385,483,475,441,420,489,373,291,315,308)(222,311,388,406,444,396,320,395,432,393,318,230)(223,312,389,443,465,398,321,397,412,394,319,231)(239,329,463,416,336,253,344,359,476,490,418,330)(283,366,437,367,447,473,440,491,421,486,495,351)(345,454,434,419,455,453,417,423,407,469,442,467)(427,429,468), (1,2,4)(3,8,6)(5,12,7)(9,18,14)(10,20,22)(11,23,24)(13,28,15)(17,33,34)(19,30,39)(26,45,43)(29,52,31)(35,59,60)(36,62,64)(38,66,54)(40,42,71)(44,46,75)(47,79,80)(48,82,84)(49,85,86)(53,92,55)(57,97,58)(63,107,109)(67,94,116)(68,117,119)(69,111,106)(70,121,73)(74,77,128)(76,78,131)(89,149,150)(93,155,95)(98,160,99)(100,158,102)(101,103,163)(104,166,167)(105,168,110)(108,164,165)(113,179,181)(114,182,183)(115,156,185)(118,177,170)(122,126,194)(123,195,197)(125,127,133)(132,134,196)(135,137,211)(136,138,212)(140,142,214)(143,145,217)(144,146,218)(147,222,223)(151,216,220)(152,230,231)(161,239,162)(169,176,251)(171,253,174)(172,250,175)(178,190,188)(184,255,258)(187,265,262)(192,272,270)(193,200,275)(199,280,281)(201,283,208)(204,287,288)(207,291,209)(210,213,289)(215,301,303)(219,221,309)(225,227,314)(226,228,315)(229,299,295)(232,320,321)(233,313,316)(236,326,327)(240,241,331)(244,336,245)(246,248,338)(247,277,249)(252,259,260)(254,345,257)(256,337,340)(261,264,351)(266,342,267)(269,310,304)(274,282,359)(284,367,293)(292,294,361)(311,312,325)(317,372,370)(318,392,319)(324,332,333)(328,349,346)(330,364,365)(339,341,373)(347,350,447)(348,352,353)(354,417,355)(362,411,422)(363,368,374)(369,371,478)(376,397,395)(377,394,393)(379,381,468)(380,382,464)(384,406,443)(385,396,398)(388,389,430)(390,391,435)(400,448,472)(403,433,463)(405,424,462)(408,474,452)(410,416,451)(412,432,419)(413,427,470)(414,460,453)(415,441,484)(428,476,482)(438,493,439)(444,465,479) );
 
Copy content sage:G = PermutationGroup(['(1,3,9,19,38,67,115,93,53,29,13,5)(2,6,14,30,54,94,156,95,55,31,15,7)(4,10,21,41,72,125,199,139,81,47,25,11)(8,16,32,56,96,157,192,121,104,61,35,17)(12,26,48,83,141,215,302,224,147,87,49,27)(18,36,63,108,173,256,348,260,178,112,65,37)(20,40,70,122,193,274,333,241,162,99,58,34)(22,42,73,126,200,282,332,240,161,98,57,33)(23,43,74,127,201,284,368,292,207,132,76,44)(24,45,77,133,208,293,374,294,209,134,78,46)(28,50,88,148,89,51)(39,68,118,189,271,357,445,358,273,191,120,69)(52,90,151,229,317,251,343,314,322,232,152,91)(59,100,82,140,138,80,137,213,299,244,164,101)(60,102,84,142,136,79,135,210,295,245,165,103)(62,105,169,219,144,85,143,216,304,252,170,106)(64,110,176,221,146,86,145,220,310,259,177,111)(66,113,180,263,184,114)(71,123,196,278,362,477,449,452,363,279,198,124)(75,129,203,286,275,360,446,342,250,168,204,130)(92,153,233,323,399,331,464,457,400,324,234,154)(97,158,128,202,285,361,277,194,276,328,236,159)(107,171,254,346,470,484,448,428,474,347,255,172)(109,174,257,349,413,415,472,482,408,350,258,175)(116,186,238,160,237,290,206,131,205,289,269,187)(117,188,270,195,228,150,227,316,391,355,267,183)(119,190,272,197,226,149,225,313,390,354,266,182)(155,235,325,401,479,409,435,438,494,378,300,214)(163,242,334,436,338,466,459,431,488,404,335,243)(166,246,337,410,372,288,371,422,460,493,339,247)(167,248,340,451,370,287,369,411,414,439,341,249)(179,261,281,365,380,301,379,327,405,433,352,262)(181,264,280,364,382,303,381,326,462,403,353,265)(185,212,298,377,425,450,424,426,492,461,356,268)(211,296,375,480,402,456,471,478,458,392,376,297)(217,305,383,481,485,387,309,386,430,487,384,306)(218,307,385,483,475,441,420,489,373,291,315,308)(222,311,388,406,444,396,320,395,432,393,318,230)(223,312,389,443,465,398,321,397,412,394,319,231)(239,329,463,416,336,253,344,359,476,490,418,330)(283,366,437,367,447,473,440,491,421,486,495,351)(345,454,434,419,455,453,417,423,407,469,442,467)(427,429,468)', '(1,2,4)(3,8,6)(5,12,7)(9,18,14)(10,20,22)(11,23,24)(13,28,15)(17,33,34)(19,30,39)(26,45,43)(29,52,31)(35,59,60)(36,62,64)(38,66,54)(40,42,71)(44,46,75)(47,79,80)(48,82,84)(49,85,86)(53,92,55)(57,97,58)(63,107,109)(67,94,116)(68,117,119)(69,111,106)(70,121,73)(74,77,128)(76,78,131)(89,149,150)(93,155,95)(98,160,99)(100,158,102)(101,103,163)(104,166,167)(105,168,110)(108,164,165)(113,179,181)(114,182,183)(115,156,185)(118,177,170)(122,126,194)(123,195,197)(125,127,133)(132,134,196)(135,137,211)(136,138,212)(140,142,214)(143,145,217)(144,146,218)(147,222,223)(151,216,220)(152,230,231)(161,239,162)(169,176,251)(171,253,174)(172,250,175)(178,190,188)(184,255,258)(187,265,262)(192,272,270)(193,200,275)(199,280,281)(201,283,208)(204,287,288)(207,291,209)(210,213,289)(215,301,303)(219,221,309)(225,227,314)(226,228,315)(229,299,295)(232,320,321)(233,313,316)(236,326,327)(240,241,331)(244,336,245)(246,248,338)(247,277,249)(252,259,260)(254,345,257)(256,337,340)(261,264,351)(266,342,267)(269,310,304)(274,282,359)(284,367,293)(292,294,361)(311,312,325)(317,372,370)(318,392,319)(324,332,333)(328,349,346)(330,364,365)(339,341,373)(347,350,447)(348,352,353)(354,417,355)(362,411,422)(363,368,374)(369,371,478)(376,397,395)(377,394,393)(379,381,468)(380,382,464)(384,406,443)(385,396,398)(388,389,430)(390,391,435)(400,448,472)(403,433,463)(405,424,462)(408,474,452)(410,416,451)(412,432,419)(413,427,470)(414,460,453)(415,441,484)(428,476,482)(438,493,439)(444,465,479)'])
 

Group information

Description:$\OmegaMinus(10,2)$
Order: \(25015379558400\)\(\medspace = 2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(471240\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\SOMinus(10,2)$, of order \(50030759116800\)\(\medspace = 2^{21} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\OmegaMinus(10,2)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 18 20 21 24 30 33 35
Elements 1 21999615 1234449152 24610037760 28043034624 279150009600 59560427520 1074879590400 694871654400 495096053760 1516083609600 2652817305600 893406412800 2029025230848 2942985830400 2084614963200 938076733440 1191208550400 1563461222400 2084614963200 3032167219200 1429450260480 25015379558400
Conjugacy classes   1 4 6 9 2 23 1 6 4 3 2 22 1 7 2 5 2 1 4 4 4 2 115
Divisions 1 4 5 9 2 18 1 6 3 3 1 17 1 5 1 3 2 1 3 3 1 1 91
Autjugacy classes 1 4 5 9 2 18 1 6 3 3 1 17 1 5 2 3 2 1 3 3 2 1 93

Minimal presentations

Permutation degree:$495$
Transitive degree:$495$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 154 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\OmegaMinus(10,2)$, $\POmegaMinus(10,2)$, $\SpinMinus(10,2)$
Copy content magma:G := OmegaMinus(10,2);
 
Copy content gap:G := Group([[[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]], [[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(2), 10, 10) G = MatrixGroup([MS([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]]), MS([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])])
 
Copy content magma:G := POmegaMinus(10,2);
 
Copy content magma:G := SpinMinus(10,2);
 
Permutation group:Degree $495$ $\langle(1,3,9,19,38,67,115,93,53,29,13,5)(2,6,14,30,54,94,156,95,55,31,15,7)(4,10,21,41,72,125,199,139,81,47,25,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 495 | (1,3,9,19,38,67,115,93,53,29,13,5)(2,6,14,30,54,94,156,95,55,31,15,7)(4,10,21,41,72,125,199,139,81,47,25,11)(8,16,32,56,96,157,192,121,104,61,35,17)(12,26,48,83,141,215,302,224,147,87,49,27)(18,36,63,108,173,256,348,260,178,112,65,37)(20,40,70,122,193,274,333,241,162,99,58,34)(22,42,73,126,200,282,332,240,161,98,57,33)(23,43,74,127,201,284,368,292,207,132,76,44)(24,45,77,133,208,293,374,294,209,134,78,46)(28,50,88,148,89,51)(39,68,118,189,271,357,445,358,273,191,120,69)(52,90,151,229,317,251,343,314,322,232,152,91)(59,100,82,140,138,80,137,213,299,244,164,101)(60,102,84,142,136,79,135,210,295,245,165,103)(62,105,169,219,144,85,143,216,304,252,170,106)(64,110,176,221,146,86,145,220,310,259,177,111)(66,113,180,263,184,114)(71,123,196,278,362,477,449,452,363,279,198,124)(75,129,203,286,275,360,446,342,250,168,204,130)(92,153,233,323,399,331,464,457,400,324,234,154)(97,158,128,202,285,361,277,194,276,328,236,159)(107,171,254,346,470,484,448,428,474,347,255,172)(109,174,257,349,413,415,472,482,408,350,258,175)(116,186,238,160,237,290,206,131,205,289,269,187)(117,188,270,195,228,150,227,316,391,355,267,183)(119,190,272,197,226,149,225,313,390,354,266,182)(155,235,325,401,479,409,435,438,494,378,300,214)(163,242,334,436,338,466,459,431,488,404,335,243)(166,246,337,410,372,288,371,422,460,493,339,247)(167,248,340,451,370,287,369,411,414,439,341,249)(179,261,281,365,380,301,379,327,405,433,352,262)(181,264,280,364,382,303,381,326,462,403,353,265)(185,212,298,377,425,450,424,426,492,461,356,268)(211,296,375,480,402,456,471,478,458,392,376,297)(217,305,383,481,485,387,309,386,430,487,384,306)(218,307,385,483,475,441,420,489,373,291,315,308)(222,311,388,406,444,396,320,395,432,393,318,230)(223,312,389,443,465,398,321,397,412,394,319,231)(239,329,463,416,336,253,344,359,476,490,418,330)(283,366,437,367,447,473,440,491,421,486,495,351)(345,454,434,419,455,453,417,423,407,469,442,467)(427,429,468), (1,2,4)(3,8,6)(5,12,7)(9,18,14)(10,20,22)(11,23,24)(13,28,15)(17,33,34)(19,30,39)(26,45,43)(29,52,31)(35,59,60)(36,62,64)(38,66,54)(40,42,71)(44,46,75)(47,79,80)(48,82,84)(49,85,86)(53,92,55)(57,97,58)(63,107,109)(67,94,116)(68,117,119)(69,111,106)(70,121,73)(74,77,128)(76,78,131)(89,149,150)(93,155,95)(98,160,99)(100,158,102)(101,103,163)(104,166,167)(105,168,110)(108,164,165)(113,179,181)(114,182,183)(115,156,185)(118,177,170)(122,126,194)(123,195,197)(125,127,133)(132,134,196)(135,137,211)(136,138,212)(140,142,214)(143,145,217)(144,146,218)(147,222,223)(151,216,220)(152,230,231)(161,239,162)(169,176,251)(171,253,174)(172,250,175)(178,190,188)(184,255,258)(187,265,262)(192,272,270)(193,200,275)(199,280,281)(201,283,208)(204,287,288)(207,291,209)(210,213,289)(215,301,303)(219,221,309)(225,227,314)(226,228,315)(229,299,295)(232,320,321)(233,313,316)(236,326,327)(240,241,331)(244,336,245)(246,248,338)(247,277,249)(252,259,260)(254,345,257)(256,337,340)(261,264,351)(266,342,267)(269,310,304)(274,282,359)(284,367,293)(292,294,361)(311,312,325)(317,372,370)(318,392,319)(324,332,333)(328,349,346)(330,364,365)(339,341,373)(347,350,447)(348,352,353)(354,417,355)(362,411,422)(363,368,374)(369,371,478)(376,397,395)(377,394,393)(379,381,468)(380,382,464)(384,406,443)(385,396,398)(388,389,430)(390,391,435)(400,448,472)(403,433,463)(405,424,462)(408,474,452)(410,416,451)(412,432,419)(413,427,470)(414,460,453)(415,441,484)(428,476,482)(438,493,439)(444,465,479) >;
 
Copy content gap:G := Group( (1,3,9,19,38,67,115,93,53,29,13,5)(2,6,14,30,54,94,156,95,55,31,15,7)(4,10,21,41,72,125,199,139,81,47,25,11)(8,16,32,56,96,157,192,121,104,61,35,17)(12,26,48,83,141,215,302,224,147,87,49,27)(18,36,63,108,173,256,348,260,178,112,65,37)(20,40,70,122,193,274,333,241,162,99,58,34)(22,42,73,126,200,282,332,240,161,98,57,33)(23,43,74,127,201,284,368,292,207,132,76,44)(24,45,77,133,208,293,374,294,209,134,78,46)(28,50,88,148,89,51)(39,68,118,189,271,357,445,358,273,191,120,69)(52,90,151,229,317,251,343,314,322,232,152,91)(59,100,82,140,138,80,137,213,299,244,164,101)(60,102,84,142,136,79,135,210,295,245,165,103)(62,105,169,219,144,85,143,216,304,252,170,106)(64,110,176,221,146,86,145,220,310,259,177,111)(66,113,180,263,184,114)(71,123,196,278,362,477,449,452,363,279,198,124)(75,129,203,286,275,360,446,342,250,168,204,130)(92,153,233,323,399,331,464,457,400,324,234,154)(97,158,128,202,285,361,277,194,276,328,236,159)(107,171,254,346,470,484,448,428,474,347,255,172)(109,174,257,349,413,415,472,482,408,350,258,175)(116,186,238,160,237,290,206,131,205,289,269,187)(117,188,270,195,228,150,227,316,391,355,267,183)(119,190,272,197,226,149,225,313,390,354,266,182)(155,235,325,401,479,409,435,438,494,378,300,214)(163,242,334,436,338,466,459,431,488,404,335,243)(166,246,337,410,372,288,371,422,460,493,339,247)(167,248,340,451,370,287,369,411,414,439,341,249)(179,261,281,365,380,301,379,327,405,433,352,262)(181,264,280,364,382,303,381,326,462,403,353,265)(185,212,298,377,425,450,424,426,492,461,356,268)(211,296,375,480,402,456,471,478,458,392,376,297)(217,305,383,481,485,387,309,386,430,487,384,306)(218,307,385,483,475,441,420,489,373,291,315,308)(222,311,388,406,444,396,320,395,432,393,318,230)(223,312,389,443,465,398,321,397,412,394,319,231)(239,329,463,416,336,253,344,359,476,490,418,330)(283,366,437,367,447,473,440,491,421,486,495,351)(345,454,434,419,455,453,417,423,407,469,442,467)(427,429,468), (1,2,4)(3,8,6)(5,12,7)(9,18,14)(10,20,22)(11,23,24)(13,28,15)(17,33,34)(19,30,39)(26,45,43)(29,52,31)(35,59,60)(36,62,64)(38,66,54)(40,42,71)(44,46,75)(47,79,80)(48,82,84)(49,85,86)(53,92,55)(57,97,58)(63,107,109)(67,94,116)(68,117,119)(69,111,106)(70,121,73)(74,77,128)(76,78,131)(89,149,150)(93,155,95)(98,160,99)(100,158,102)(101,103,163)(104,166,167)(105,168,110)(108,164,165)(113,179,181)(114,182,183)(115,156,185)(118,177,170)(122,126,194)(123,195,197)(125,127,133)(132,134,196)(135,137,211)(136,138,212)(140,142,214)(143,145,217)(144,146,218)(147,222,223)(151,216,220)(152,230,231)(161,239,162)(169,176,251)(171,253,174)(172,250,175)(178,190,188)(184,255,258)(187,265,262)(192,272,270)(193,200,275)(199,280,281)(201,283,208)(204,287,288)(207,291,209)(210,213,289)(215,301,303)(219,221,309)(225,227,314)(226,228,315)(229,299,295)(232,320,321)(233,313,316)(236,326,327)(240,241,331)(244,336,245)(246,248,338)(247,277,249)(252,259,260)(254,345,257)(256,337,340)(261,264,351)(266,342,267)(269,310,304)(274,282,359)(284,367,293)(292,294,361)(311,312,325)(317,372,370)(318,392,319)(324,332,333)(328,349,346)(330,364,365)(339,341,373)(347,350,447)(348,352,353)(354,417,355)(362,411,422)(363,368,374)(369,371,478)(376,397,395)(377,394,393)(379,381,468)(380,382,464)(384,406,443)(385,396,398)(388,389,430)(390,391,435)(400,448,472)(403,433,463)(405,424,462)(408,474,452)(410,416,451)(412,432,419)(413,427,470)(414,460,453)(415,441,484)(428,476,482)(438,493,439)(444,465,479) );
 
Copy content sage:G = PermutationGroup(['(1,3,9,19,38,67,115,93,53,29,13,5)(2,6,14,30,54,94,156,95,55,31,15,7)(4,10,21,41,72,125,199,139,81,47,25,11)(8,16,32,56,96,157,192,121,104,61,35,17)(12,26,48,83,141,215,302,224,147,87,49,27)(18,36,63,108,173,256,348,260,178,112,65,37)(20,40,70,122,193,274,333,241,162,99,58,34)(22,42,73,126,200,282,332,240,161,98,57,33)(23,43,74,127,201,284,368,292,207,132,76,44)(24,45,77,133,208,293,374,294,209,134,78,46)(28,50,88,148,89,51)(39,68,118,189,271,357,445,358,273,191,120,69)(52,90,151,229,317,251,343,314,322,232,152,91)(59,100,82,140,138,80,137,213,299,244,164,101)(60,102,84,142,136,79,135,210,295,245,165,103)(62,105,169,219,144,85,143,216,304,252,170,106)(64,110,176,221,146,86,145,220,310,259,177,111)(66,113,180,263,184,114)(71,123,196,278,362,477,449,452,363,279,198,124)(75,129,203,286,275,360,446,342,250,168,204,130)(92,153,233,323,399,331,464,457,400,324,234,154)(97,158,128,202,285,361,277,194,276,328,236,159)(107,171,254,346,470,484,448,428,474,347,255,172)(109,174,257,349,413,415,472,482,408,350,258,175)(116,186,238,160,237,290,206,131,205,289,269,187)(117,188,270,195,228,150,227,316,391,355,267,183)(119,190,272,197,226,149,225,313,390,354,266,182)(155,235,325,401,479,409,435,438,494,378,300,214)(163,242,334,436,338,466,459,431,488,404,335,243)(166,246,337,410,372,288,371,422,460,493,339,247)(167,248,340,451,370,287,369,411,414,439,341,249)(179,261,281,365,380,301,379,327,405,433,352,262)(181,264,280,364,382,303,381,326,462,403,353,265)(185,212,298,377,425,450,424,426,492,461,356,268)(211,296,375,480,402,456,471,478,458,392,376,297)(217,305,383,481,485,387,309,386,430,487,384,306)(218,307,385,483,475,441,420,489,373,291,315,308)(222,311,388,406,444,396,320,395,432,393,318,230)(223,312,389,443,465,398,321,397,412,394,319,231)(239,329,463,416,336,253,344,359,476,490,418,330)(283,366,437,367,447,473,440,491,421,486,495,351)(345,454,434,419,455,453,417,423,407,469,442,467)(427,429,468)', '(1,2,4)(3,8,6)(5,12,7)(9,18,14)(10,20,22)(11,23,24)(13,28,15)(17,33,34)(19,30,39)(26,45,43)(29,52,31)(35,59,60)(36,62,64)(38,66,54)(40,42,71)(44,46,75)(47,79,80)(48,82,84)(49,85,86)(53,92,55)(57,97,58)(63,107,109)(67,94,116)(68,117,119)(69,111,106)(70,121,73)(74,77,128)(76,78,131)(89,149,150)(93,155,95)(98,160,99)(100,158,102)(101,103,163)(104,166,167)(105,168,110)(108,164,165)(113,179,181)(114,182,183)(115,156,185)(118,177,170)(122,126,194)(123,195,197)(125,127,133)(132,134,196)(135,137,211)(136,138,212)(140,142,214)(143,145,217)(144,146,218)(147,222,223)(151,216,220)(152,230,231)(161,239,162)(169,176,251)(171,253,174)(172,250,175)(178,190,188)(184,255,258)(187,265,262)(192,272,270)(193,200,275)(199,280,281)(201,283,208)(204,287,288)(207,291,209)(210,213,289)(215,301,303)(219,221,309)(225,227,314)(226,228,315)(229,299,295)(232,320,321)(233,313,316)(236,326,327)(240,241,331)(244,336,245)(246,248,338)(247,277,249)(252,259,260)(254,345,257)(256,337,340)(261,264,351)(266,342,267)(269,310,304)(274,282,359)(284,367,293)(292,294,361)(311,312,325)(317,372,370)(318,392,319)(324,332,333)(328,349,346)(330,364,365)(339,341,373)(347,350,447)(348,352,353)(354,417,355)(362,411,422)(363,368,374)(369,371,478)(376,397,395)(377,394,393)(379,381,468)(380,382,464)(384,406,443)(385,396,398)(388,389,430)(390,391,435)(400,448,472)(403,433,463)(405,424,462)(408,474,452)(410,416,451)(412,432,419)(413,427,470)(414,460,453)(415,441,484)(428,476,482)(438,493,439)(444,465,479)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as matrices in $\OmegaMinus(10,2)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 2 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\OmegaMinus(10,2)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2^6.C_2^5.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^5:C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $115 \times 115$ character table is not available for this group.

Rational character table

The $91 \times 91$ rational character table is not available for this group.