Properties

Label 212427600.a
Order \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{3} \cdot 19 \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{3} \cdot 19 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $133$
Trans deg. $133$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SL(3, 11);
 
Copy content gap:G := SL(3, 11);
 
Copy content sage:G = SL(3, 11)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\SL(3,11)$
Order: \(212427600\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{3} \cdot 19 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(175560\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\PSL(3,11).C_2$, of order \(424855200\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{3} \cdot 19 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\SL(3,11)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 10 11 12 15 19 20 22 24 30 40 55 60 110 120 133
Elements 1 16093 1770230 1770230 4312924 1770230 3194400 3540460 21307132 1771560 3540460 7080920 9583200 7080920 1931160 7080920 7080920 14161840 7724640 14161840 7724640 28323680 57499200 212427600
Conjugacy classes   1 1 1 1 6 1 2 2 14 2 2 4 6 4 1 4 4 8 4 8 4 16 36 132
Divisions 1 1 1 1 2 1 1 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 28
Autjugacy classes 1 1 1 1 4 1 1 1 8 2 2 2 3 2 1 2 2 4 2 4 2 8 18 73

Minimal presentations

Permutation degree:$133$
Transitive degree:$133$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 132 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\SL(3,11)$, $\PSL(3,11)$, $\PGL(3,11)$, $\PGammaL(3,11)$, $\PSigmaL(3,11)$
Permutation group:Degree $133$ $\langle(1,2,5,12,10,4,9,22,51,93,94,125,80,38,79,70,32,47,28,60,36,77,103,131,100,132,98,54,97,83,41,18,44,61,106,114,66,30,64,109,122,74,34,68,31,13,29,62,108,95,52,63,53,23,43,85,90,121,99,133,119,69,118,107,76,112,65,73,117,105,113,110,82,39,16,6,14,33,71,88,102,81,40,78,124,116,130,92,56,24,55,48,20,8,19,46,89,127,120,72,96,91,49,21,50,26,11,25,58,87,45,67,115,129,126,84,42,17,7,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 133 | (1,2,5,12,10,4,9,22,51,93,94,125,80,38,79,70,32,47,28,60,36,77,103,131,100,132,98,54,97,83,41,18,44,61,106,114,66,30,64,109,122,74,34,68,31,13,29,62,108,95,52,63,53,23,43,85,90,121,99,133,119,69,118,107,76,112,65,73,117,105,113,110,82,39,16,6,14,33,71,88,102,81,40,78,124,116,130,92,56,24,55,48,20,8,19,46,89,127,120,72,96,91,49,21,50,26,11,25,58,87,45,67,115,129,126,84,42,17,7,3)(15,35,75,123,86,57,101,128,104,59,27,37), (2,4,8,18,43,79,78,36,15,6)(5,11,24,54,96,84,111,65,30,13)(9,21,49,91,129,108,110,64,52,22)(10,20,38,16,23)(12,27,53,81,39,42,80,83,48,28)(14,32,69,87,123,126,128,89,73,34)(17,40,37,60,41)(19,45,86,98,82,101,114,112,90,47)(25,57,74,120,70,119,130,121,72,33)(26,56,100,127,115,133,116,67,31,44)(29,61,105,131,97,106,95,124,109,63)(35,59,103,122,118,132,125,113,66,76)(46,88,55,99,85,71,58,102,94,51)(50,92,62,107,93,104,77,117,68,75) >;
 
Copy content gap:G := Group( (1,2,5,12,10,4,9,22,51,93,94,125,80,38,79,70,32,47,28,60,36,77,103,131,100,132,98,54,97,83,41,18,44,61,106,114,66,30,64,109,122,74,34,68,31,13,29,62,108,95,52,63,53,23,43,85,90,121,99,133,119,69,118,107,76,112,65,73,117,105,113,110,82,39,16,6,14,33,71,88,102,81,40,78,124,116,130,92,56,24,55,48,20,8,19,46,89,127,120,72,96,91,49,21,50,26,11,25,58,87,45,67,115,129,126,84,42,17,7,3)(15,35,75,123,86,57,101,128,104,59,27,37), (2,4,8,18,43,79,78,36,15,6)(5,11,24,54,96,84,111,65,30,13)(9,21,49,91,129,108,110,64,52,22)(10,20,38,16,23)(12,27,53,81,39,42,80,83,48,28)(14,32,69,87,123,126,128,89,73,34)(17,40,37,60,41)(19,45,86,98,82,101,114,112,90,47)(25,57,74,120,70,119,130,121,72,33)(26,56,100,127,115,133,116,67,31,44)(29,61,105,131,97,106,95,124,109,63)(35,59,103,122,118,132,125,113,66,76)(46,88,55,99,85,71,58,102,94,51)(50,92,62,107,93,104,77,117,68,75) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,12,10,4,9,22,51,93,94,125,80,38,79,70,32,47,28,60,36,77,103,131,100,132,98,54,97,83,41,18,44,61,106,114,66,30,64,109,122,74,34,68,31,13,29,62,108,95,52,63,53,23,43,85,90,121,99,133,119,69,118,107,76,112,65,73,117,105,113,110,82,39,16,6,14,33,71,88,102,81,40,78,124,116,130,92,56,24,55,48,20,8,19,46,89,127,120,72,96,91,49,21,50,26,11,25,58,87,45,67,115,129,126,84,42,17,7,3)(15,35,75,123,86,57,101,128,104,59,27,37)', '(2,4,8,18,43,79,78,36,15,6)(5,11,24,54,96,84,111,65,30,13)(9,21,49,91,129,108,110,64,52,22)(10,20,38,16,23)(12,27,53,81,39,42,80,83,48,28)(14,32,69,87,123,126,128,89,73,34)(17,40,37,60,41)(19,45,86,98,82,101,114,112,90,47)(25,57,74,120,70,119,130,121,72,33)(26,56,100,127,115,133,116,67,31,44)(29,61,105,131,97,106,95,124,109,63)(35,59,103,122,118,132,125,113,66,76)(46,88,55,99,85,71,58,102,94,51)(50,92,62,107,93,104,77,117,68,75)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as matrices in $\SL(3,11)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 2 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\SL(3,11)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $\SD_{16}$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
11-Sylow subgroup: $P_{ 11 } \simeq$ $\He_{11}$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $132 \times 132$ character table is not available for this group.

Rational character table

The $28 \times 28$ rational character table is not available for this group.