| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid e^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([28, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3413078215344, 3731913661393, 141, 1693717044434, 1815860020522, 10585424899395, 9358650296159, 1453333243995, 311, 19976866190404, 11191967829312, 3926924155900, 297229383476, 25406223800837, 1303222494369, 1184304915421, 3477074638553, 198904711941, 604226480401, 16984783408774, 5449618485058, 561459474638, 138344180274, 15614778178, 627714932522, 566, 308586793991, 2557112280611, 605272550463, 6973844059, 258951752759, 415112392275, 28726571672072, 10934627219748, 5104213915312, 875872607492, 2132523431004, 461225721496, 84282973160, 6139454280, 736, 43466288687369, 13279977155237, 7692541678145, 3295569597693, 1537523316121, 571735322069, 186633209457, 9346045, 53473859341066, 14583834863174, 25761903618, 6783047054878, 338730771578, 157975625958, 16913568850, 1748361590, 21734705226, 16991784610, 906, 27911301304331, 13477077540903, 41986667587, 3704415482975, 299678206587, 291333563287, 19783685555, 16371416079, 46339489963, 31217842919, 49483728403212, 19424235160552, 15825391231172, 1663387270368, 2071124572732, 632187829880, 34062708132, 20697237496, 5607457364, 2996665572, 505712044, 473156, 1076, 25820185853965, 31603654697, 8780806798917, 2026584354913, 4229424569789, 1409807173977, 1354933, 56685, 37015826238734, 21119838717642, 1195062180550, 27312072578, 186359110686, 1509761423674, 37861039622, 5431656090, 6897857638, 20211926, 1077950454, 189322, 1246, 77329628135439, 1607271579691, 83607623, 13544423523, 12192895, 836263830683, 387311, 78158326147792, 5707413938060, 18700983858888, 730088242228, 1162819194896, 413262331932, 42445529464, 16422234404, 20866815888, 10429398268, 7649613512, 7925314644, 14688, 1416, 3575727783953, 121899810861, 1693053001, 848219517029, 846526593, 47029405, 29722484921, 23514837, 4953747697, 7838477, 12505, 7164240120594, 45891741823246, 1632824137802, 863628835206, 25243466098, 79005217694, 19153589802, 14470667278, 63441242, 455056578, 728772202, 574914, 16426, 1586, 7494580961299, 48331017584687, 627056715, 1190780559463, 297224847491, 313528479, 8709307, 16512491735, 2903283, 4550515471, 484195, 13907, 8249067485588, 26557743155376, 24126935011276, 11826254768, 1027492560996, 8190111040, 75552487100, 10616852952, 12690449092, 46275015800, 22861740, 253762340, 635452, 106308, 624980, 1756, 5214603018261, 53169870555697, 1663706677325, 2414168169, 707696124037, 45524312253, 7759826137, 7587385589, 1293304593, 19160365, 138910821, 532637, 89173, 1220205, 480743446, 8653381682, 14420860489806, 35054314, 1674429345926, 1201738374306, 128658959094, 15503975698, 278678, 8310, 2988802768919, 13983993612339, 1670855123023, 429094858859, 806551603335, 10534551715, 17829310655, 30140522715, 2959359223, 1736598803, 1003290927, 184633703, 5274271, 871383, 1419791, 3124309708824, 14566681785652, 1768691635280, 995844326508, 565036819336, 32136652964, 17788377792, 34335705820, 2952029048, 3474576276, 2111961904, 257645160, 37850816, 6300472, 1336128, 6173038190617, 62832092843573, 15773609779281, 2688940909, 1830472390793, 1453862172837, 20379340993, 47280070877, 148429532409, 22553137429, 1902072113, 7548265, 52835745, 8491865, 44209, 122889, 3374630719514, 21034658098998, 14176355429458, 8853228502382, 6674755352970, 1338781602982, 238885065410, 99937152222, 154010989690, 32252266646, 4820498226, 701519978, 111422722, 18235194, 3402530, 817066, 76303870304283, 63017691448375, 6794785751123, 16916332688751, 4633885864075, 891486425255, 697914040515, 196206022879, 31237871867, 72132415767, 10924720435, 303464867, 99405403, 8430099, 1952747]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.4, G.6, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "n", "o", "p", "q", "r"]);
gap:G := PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.21; m := G.23; n := G.24; o := G.25; p := G.26; q := G.27; r := G.28;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
|
| Permutation group: | Degree $36$
$\langle(1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22), (1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29), (1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36) >;
gap:G := Group( (1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22), (1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29), (1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36) );
sage:G = PermutationGroup(['(1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22)', '(1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29)', '(1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36)'])
|
| Transitive group: |
36T117213 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^8.C_3^4.Q_8)$ . $C_2$ |
$(C_3^{12}.C_2^8.C_3^4.D_4)$ . $C_2$ |
$(C_3^{12}.C_2^8.C_3^4.C_4.C_2)$ . $C_2$ (2) |
$C_3^{12}$ . $(A_4^2:\POPlus(4,3).C_2^2)$ |
all 9 |
Elements of the group are displayed as permutations of degree 36.
The $6646 \times 6646$ character table is not available for this group.
The $3665 \times 3665$ rational character table is not available for this group.