Properties

Label 176319369216.cr
Order \( 2^{12} \cdot 3^{16} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22), (1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29), (1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36) >;
 
Copy content gap:G := Group( (1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22), (1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29), (1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36) );
 
Copy content sage:G = PermutationGroup(['(1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22)', '(1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29)', '(1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.D_4:C_2$
Order: \(176319369216\)\(\medspace = 2^{12} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1410554953728\)\(\medspace = 2^{15} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 1647567 96059600 1700832816 7456890672 26937681408 3390724800 45261545472 31068277056 39182082048 21223627776 176319369216
Conjugacy classes   1 12 366 22 2306 11 1008 840 1756 30 294 6646
Divisions 1 12 231 21 1366 8 513 474 880 12 147 3665
Autjugacy classes 1 10 150 16 878 6 231 294 436 9 70 2101

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([28, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3413078215344, 3731913661393, 141, 1693717044434, 1815860020522, 10585424899395, 9358650296159, 1453333243995, 311, 19976866190404, 11191967829312, 3926924155900, 297229383476, 25406223800837, 1303222494369, 1184304915421, 3477074638553, 198904711941, 604226480401, 16984783408774, 5449618485058, 561459474638, 138344180274, 15614778178, 627714932522, 566, 308586793991, 2557112280611, 605272550463, 6973844059, 258951752759, 415112392275, 28726571672072, 10934627219748, 5104213915312, 875872607492, 2132523431004, 461225721496, 84282973160, 6139454280, 736, 43466288687369, 13279977155237, 7692541678145, 3295569597693, 1537523316121, 571735322069, 186633209457, 9346045, 53473859341066, 14583834863174, 25761903618, 6783047054878, 338730771578, 157975625958, 16913568850, 1748361590, 21734705226, 16991784610, 906, 27911301304331, 13477077540903, 41986667587, 3704415482975, 299678206587, 291333563287, 19783685555, 16371416079, 46339489963, 31217842919, 49483728403212, 19424235160552, 15825391231172, 1663387270368, 2071124572732, 632187829880, 34062708132, 20697237496, 5607457364, 2996665572, 505712044, 473156, 1076, 25820185853965, 31603654697, 8780806798917, 2026584354913, 4229424569789, 1409807173977, 1354933, 56685, 37015826238734, 21119838717642, 1195062180550, 27312072578, 186359110686, 1509761423674, 37861039622, 5431656090, 6897857638, 20211926, 1077950454, 189322, 1246, 77329628135439, 1607271579691, 83607623, 13544423523, 12192895, 836263830683, 387311, 78158326147792, 5707413938060, 18700983858888, 730088242228, 1162819194896, 413262331932, 42445529464, 16422234404, 20866815888, 10429398268, 7649613512, 7925314644, 14688, 1416, 3575727783953, 121899810861, 1693053001, 848219517029, 846526593, 47029405, 29722484921, 23514837, 4953747697, 7838477, 12505, 7164240120594, 45891741823246, 1632824137802, 863628835206, 25243466098, 79005217694, 19153589802, 14470667278, 63441242, 455056578, 728772202, 574914, 16426, 1586, 7494580961299, 48331017584687, 627056715, 1190780559463, 297224847491, 313528479, 8709307, 16512491735, 2903283, 4550515471, 484195, 13907, 8249067485588, 26557743155376, 24126935011276, 11826254768, 1027492560996, 8190111040, 75552487100, 10616852952, 12690449092, 46275015800, 22861740, 253762340, 635452, 106308, 624980, 1756, 5214603018261, 53169870555697, 1663706677325, 2414168169, 707696124037, 45524312253, 7759826137, 7587385589, 1293304593, 19160365, 138910821, 532637, 89173, 1220205, 480743446, 8653381682, 14420860489806, 35054314, 1674429345926, 1201738374306, 128658959094, 15503975698, 278678, 8310, 2988802768919, 13983993612339, 1670855123023, 429094858859, 806551603335, 10534551715, 17829310655, 30140522715, 2959359223, 1736598803, 1003290927, 184633703, 5274271, 871383, 1419791, 3124309708824, 14566681785652, 1768691635280, 995844326508, 565036819336, 32136652964, 17788377792, 34335705820, 2952029048, 3474576276, 2111961904, 257645160, 37850816, 6300472, 1336128, 6173038190617, 62832092843573, 15773609779281, 2688940909, 1830472390793, 1453862172837, 20379340993, 47280070877, 148429532409, 22553137429, 1902072113, 7548265, 52835745, 8491865, 44209, 122889, 3374630719514, 21034658098998, 14176355429458, 8853228502382, 6674755352970, 1338781602982, 238885065410, 99937152222, 154010989690, 32252266646, 4820498226, 701519978, 111422722, 18235194, 3402530, 817066, 76303870304283, 63017691448375, 6794785751123, 16916332688751, 4633885864075, 891486425255, 697914040515, 196206022879, 31237871867, 72132415767, 10924720435, 303464867, 99405403, 8430099, 1952747]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.4, G.6, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.21; m := G.23; n := G.24; o := G.25; p := G.26; q := G.27; r := G.28;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 
Permutation group:Degree $36$ $\langle(1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22), (1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29), (1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36) >;
 
Copy content gap:G := Group( (1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22), (1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29), (1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36) );
 
Copy content sage:G = PermutationGroup(['(1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22)', '(1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29)', '(1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36)'])
 
Transitive group: 36T117213 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^8.C_3^4.Q_8)$ . $C_2$ $(C_3^{12}.C_2^8.C_3^4.D_4)$ . $C_2$ $(C_3^{12}.C_2^8.C_3^4.C_4.C_2)$ . $C_2$ (2) $C_3^{12}$ . $(A_4^2:\POPlus(4,3).C_2^2)$ all 9

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 20 normal subgroups (12 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\wr D_4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $6646 \times 6646$ character table is not available for this group.

Rational character table

The $3665 \times 3665$ rational character table is not available for this group.