# Group 176319369216.cr downloaded from the LMFDB on 05 November 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(18126073331974927286735623387666047387503886959559907571854349114113294505034831160814698760194477934436228155151371098861393648693764744800055470814843378996458395731811640765508129689560451896086907879241464248095744184988189956190728424468938495333983435936060966035883407674533510525166243297323778362998438693362120553876286659950834207653891945406883657095847069287650972306294725223078431510060912791824234219628082199845168933815528115213693434862613356739696615476508260341531429370644492803572416867147453428464222538717325636915023023663845971588222479273790536878047145482679716335727596631844211629207774203810509821837921704608026561240402470646722910987010025100943420789135328973100593750204005781802889689259642736085027014618888800908482783749016148165347949887148015532956043187647879595468834776020628769593805616533140454004469284697702607203580576153617174349509937557304524653427263147819039946490091286619144110463637123405161094923409369858390657322620836874869561542541446037562782342988917919318782930430472655676431743421693226550475497309699826439132627643096004371253600535671282956161930849252792860666534486504427980975343687963698300930689431899979237036764054358975101593615075511857459427800809516430674567810003207279363539758161733417046871601369849543589301483262437035322195737679930804641013263545124851161127923331113661843578784431784611856802423750512158764893519020223422106149889325984777536743343510903922064734372012799676424393674525016086131661082247727992794336888925899593605369438037484905187095744792361330974831241224846575291186549513973461382915664214601987120218140282018837787434331671121300733435982725663223714751312032808678586722464687941753270533873307350191123233323671894696414990549171208139817676722645403979703878049258726764518967708687209548663817796704246252339353650259314652183361746691704821856365902047260969973858698747791898585736573386706483871599463841599599488073826916783437428453158631073574201677668701303704591060930462001072603403254236232342530073938476556980542930542590437749959468362350768398018924512228517202914879507891241517572865127543883322264695384716212101797200182109875494670201663942776296679219057856301796103716398387093511603469520168497884145441642076979967474624889341075430085296539569281741328245625334156678663717616053516241204793278586247931049708026304708071715961981918315880448072899346482985042928147865390336185785204673736491608419027300107002003809606532654082734035564584115754211620221226410599405695853855392461079677517547251021229811314423705766083524289360613902299728587242211160473828403909975404448878751857150827590036721603258664203869833180310517884434334192797219313461994906234276922611236516973256993376507749972139696262497081863583478883678590993438234068294012416787868927606340394764023924224449664534234271775421749215198829687583806344596200599519507546666895982194520843380171048800216096243239765992444890690580095634867741825701039539866222290756716668752434255928704210386851259661285197077477672866064396419064441411383998587592772804492014939451432903946642814460631844089224096286981263577646872842752869336290735141173611378914597442456205351765531095492827879926235577093195880905623503023808267165221965782144383,176319369216); a := GPC.1; b := GPC.2; c := GPC.4; d := GPC.6; e := GPC.7; f := GPC.9; g := GPC.11; h := GPC.13; i := GPC.15; j := GPC.17; k := GPC.19; l := GPC.21; m := GPC.23; n := GPC.24; o := GPC.25; p := GPC.26; q := GPC.27; r := GPC.28; GPerm := Group( (1,32,3,31,2,33)(4,12,5,11,6,10)(7,14,21,27,9,15,19,25,8,13,20,26)(16,35,30,23,18,34,29,24,17,36,28,22), (1,5,25,18,2,4,27,16)(3,6,26,17)(7,24,20,36)(8,22,19,35)(9,23,21,34)(10,32)(11,31)(12,33)(13,30)(14,28,15,29), (1,20,26,32)(2,19,27,31,3,21,25,33)(4,10,17,22)(5,12,18,23)(6,11,16,24)(7,15,9,14)(8,13)(28,35,29,34,30,36) ); # Booleans booleans_176319369216_cr := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := true, supersolvable := false);