Properties

Label 167...000.a
Order \( 2^{37} \cdot 3^{18} \cdot 5^{9} \cdot 7^{5} \cdot 11^{3} \cdot 13^{3} \cdot 17^{2} \cdot 19^{2} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \)
Exponent \( 2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{38} \cdot 3^{18} \cdot 5^{9} \cdot 7^{5} \cdot 11^{3} \cdot 13^{3} \cdot 17^{2} \cdot 19^{2} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $41$
Trans deg. not computed
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := AlternatingGroup(41);
 
Copy content gap:G := AlternatingGroup(41);
 
Copy content sage:G = AlternatingGroup(41)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$A_{41}$
Order: \(167\!\cdots\!000\)\(\medspace = 2^{37} \cdot 3^{18} \cdot 5^{9} \cdot 7^{5} \cdot 11^{3} \cdot 13^{3} \cdot 17^{2} \cdot 19^{2} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(219060189739591200\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(334\!\cdots\!000\)\(\medspace = 2^{38} \cdot 3^{18} \cdot 5^{9} \cdot 7^{5} \cdot 11^{3} \cdot 13^{3} \cdot 17^{2} \cdot 19^{2} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$A_{41}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 48 50 51 52 54 55 56 57 58 60 62 63 65 66 68 69 70 72 74 75 76 77 78 80 84 85 87 88 90 91 92 93 95 96 99 100 102 104 105 108 110 111 112 114 115 116 117 119 120 124 126 130 132 133 135 136 138 140 143 144 145 150 152 153 154 155 156 160 161 165 168 170 171 174 175 176 180 182 184 186 187 189 190 195 198 200 203 204 207 208 209 210 216 217 220 221 224 225 228 230 231 232 234 238 240 247 248 252 253 255 260 261 264 266 270 272 273 275 276 279 280 285 286 290 297 299 300 304 306 308 310 312 315 319 322 323 325 330 336 340 342 345 348 350 351 357 360 364 368 372 374 378 380 385 390 391 396 399 406 408 414 418 420 429 435 440 442 450 455 456 460 462 465 468 476 483 494 495 504 506 510 520 525 528 532 540 546 550 552 560 561 570 572 580 585 595 598 600 609 612 616 624 627 630 644 646 651 660 663 665 680 684 690 693 700 714 715 720 728 741 748 756 759 760 765 770 780 792 798 805 816 819 825 828 836 840 855 858 870 880 884 897 900 910 912 920 924 935 936 945 952 966 969 975 988 990 1001 1008 1012 1015 1020 1035 1040 1045 1050 1064 1071 1092 1105 1122 1140 1144 1155 1170 1190 1197 1224 1232 1235 1254 1260 1265 1287 1288 1309 1320 1326 1330 1360 1365 1368 1380 1386 1428 1430 1449 1456 1463 1482 1495 1496 1518 1530 1540 1547 1560 1575 1584 1596 1610 1615 1638 1672 1680 1683 1710 1716 1729 1768 1771 1785 1820 1848 1870 1872 1881 1932 1980 1989 1995 2002 2040 2070 2090 2100 2142 2145 2184 2210 2223 2244 2280 2310 2340 2380 2394 2415 2431 2470 2508 2520 2574 2618 2640 2652 2660 2730 2760 2772 2805 2856 2860 2926 2964 3003 3060 3080 3094 3120 3135 3192 3220 3276 3315 3366 3420 3432 3465 3570 3640 3696 3705 3740 3927 3960 3990 4004 4095 4180 4284 4290 4368 4389 4420 4488 4620 4641 4680 4760 4788 5005 5040 5148 5236 5320 5355 5460 5544 5610 5720 5985 6006 6120 6160 6435 6545 6552 6930 7140 7980 8008 8190 8580 9009 9240 10010 10920 12012 13860 15015 16380
Elements 1 250251726700293736962190335 2901179078413684895850063154211240 107128757204578763667337842206742942720 2242042772057094472432849745420659140624 925704836053848397787520945516577190938200 23037043366728896249466052850521998964800 24553641623541274288413956360278743869030400 39561917157399972736296406609275381425020800 215725660229585096520574400140359564218669040 103891279647399170226020880890813797478400 3968882424447664819167200536961635111802572800 1268871438899984042806503766717583248690176000 833213367616707846432291074632526508086462400 3459908600093295933402238739659650244041413760 5060735321417505420024172388834864214835200000 11483401512180688443115706436967163289600000 23929197880179584862358921733406247856265552000 7722189892235412538078439864338124650905600000 55262269188417196567247727475141492764857057280 2011106541161308670881030458579740238087782400 1568686190060998359901756294952253199520256000 227174755127454057755639808000000 107418280896249778455063135562255278188003328000 1821310931231230240667808777845611560960000000 49491256095862080421687599416742031269196800000 24475445258610519107586280275598764933120000000 38097756937173370302801588863825606297180160000 2408207823217969173882398236999680000000 282304882471487200976864511482414782008093436800 297374824105754387020058724233379840000000 169253854888031166916336623484670469734400000000 31128172755969469810814949130528852729847808000 25803203225755690469525031246513600200908800000 192491773196318070042088376913178665511946035200 514134691504729372677786617494216899128807424000 37671764204013296292984304114235080704000000000 440164824341819300767226489691976329682944000000 428891290234073625155835939032506481853898752000 22799642408942075949372936584435267101890969600 815915283247897734345611269596115894272000000000 60455068955133050584019378229284451450839040000 6396712205065686105776893760412895676006400000 6668039955933080942672796977491559809884979200 115339207291047999912445300924416000000000 130565583710919096221613248882988790107340800000 7372265799623260300198040098288071475200000000 4019233117197854942861281853831992708300800000 1916347845820170964266240537548296676966400000 41279826005269202699100809253072918282240000000 147655102429744338924958025915488544602521600 26363234943851773052588485340043672905318400000 15444691516127021637482333893172242022400000000 153776110551583421598260539423614566400000000 301599567189308773567628026545911585889477427200 1592442183086314742492414468269749043200000000 15298720419858877640387036862318022954131456000 149611344568917491768306903140967055949824000 159059515804915039901428158216005620508467200000 48238351414959367294660728952449814167552000000 12148162077506778236571184823361601536000000 71719491296072168514636877703517706917168537600 103567244380168584131057765101493625893683200000 113015292612039888878952912342705242112000000000 93208622395490643191217458005552209592320000000 31535033353333507019724040401629478912000000 636560219640311301167303674203831862886400000 20176150547999320526522101874350179651379200000 50504975894547167514004092091243172777164800000 330533862193603918048004282422931022045904896000 5793107692000150892780329341867531396710400000 1870214195511074860437070470853951488000000000 26288622951473996532168825786005067713740800000 163689782424775384327580547599408656546664448000 1055173082304888013630617727514627574988800000 347965691569359150386353212383082577920000000 9230514540242616173102622800204110233600000000 59154499578080439840880336694088853094400000 174231909443561495355052406528337248256000000000 1362906416786111140120477769350696137523200000 24607952554016241622401746967014827622400000000 248965529172354575666171246779517535436800000000 24916988834033787436979371916335949807616000000 159001726647797296743422187793698805469432217600 93061964329775306645992277455215054028800000000 21614502706998573757085684381503317788319744000 301374113632106370343874432913880645632000000000 23023383759135836832131023333099900502016000000 1034742666163229532910185213955681419264000000 323934321414851053467674338698505224192000000 9212261878625090559002770919889095884800000000 1962319517116241831427604367314131812352000000 8427416112529088173757512023909902450688000000 332588328708375873838207653826540078258716672000 28101920877993789573395549440054394880000000000 123231096029102264634443923202180745740083200000 47189644331101913662257821859935644586803200000 160535765994879833924450641766595699631718400000 855965163204674480496417502317099614208000000 40764735638065022881483690035360175226880000000 1762388927197816705816565513842883297280000000 5263916781702586795553763499714554101760000000 228007891402678866930267723482816351891619840000 389662379182306954900359541315298525184000000 65842940243680237886112025512473410928640000000 11581129218842970988460626299289149112320000000 73199680296868417481949596807992128307200000000 3255378325074241274149027323076946165760000000 1394676199659466693062029769131339808768000000 21914771736884841403990869716145591902208000000 23380798170490832925065097134125256540160000000 99140514527200181462366539444752915431424000000 104539145666136897213031443917002348953600000000 618397075570987879674460695328708362240000000 113335001420482682915921958269620370443272192000 210837890660305974714014603146348044327321600000 101183153459437304813862456022047076791091200000 4228722780899736474353884459894120120320000000 61481834711693539165518492878390270361600000000 8420550483614000009827702852170735943680000000 25214422804928395138134410855357475717120000000 200824365537349927795834073963743359894552576000 101305003701155802963516078611871078825984000000 11633497059119789286129275591177797632000000000 59950764539720084423243838805449375744000000000 4065693588908442792269730681057831813120000000 24969289516628314073558530822201619251200000000 7124382943838072125140943646914015789056000000 10007043361562437852504535053185254563381248000 120201201373383236337264590870272718094336000000 36007927951669375706710830682523031306240000000 1373256429111814741714698770666697523200000000 104831132236798397791579178904135042859008000000 11547323006830013069194984660872776908800000000 5366654825677140402307841321149598269440000000 7275455643845781136351034644863343656960000000 174066955185239349870476270837171323358760960000 77436404197138442380023291790372110336000000000 25693184802737179038533073773764018176000000000 42871767316581068890740935669810338371993600000 3792110056469924310004862382243840000000 74670818332954926580736745655001677824000000000 25222143081353664089493300754578344509440000000 28084311119644834031736620402198383165440000000 16400625591312932914790776764737519616000000000 157754793376644067691254007755120306785484800000 72095962528370273940021685460001619968000000000 71148860580747846403312788249621277507584000000 10229842765938894324850376397836461670400000000 135592476496367676396657428798918119076659200000 373223463452566234721531192357683200000000 67444610107185094976149318656130547712000000000 136935069554286046334677334125014149824512000000 26234806616760624182955378359245209600000000 12023543072768692215092242164343255675699200000 39070490974423557562694400752911916571033600000 64085300025218021280019275964445884416000000000 98549887920629952119547657120818172788736000000 1538747809824214128788447202268686581760000000 60787577294753677268318284055442106613760000000 21864396479192030789653635329046242918400000000 26566215487551317478271830488482892414976000000 25342823191790762960734895495030872473600000000 72713531718931327234864866385282990080000000000 119901529079440168846487677610898751488000000000 55861033077163230129247576611635290806681600000 20139934789393661145902973926217980313600000000 35904671591885779235081572087527555072000000000 62483167524587570748018794065334737305600000000 56317384870646139912744212211179716608000000000 932344665918723720963491138613175910400000000 93734923556726628823818670348155192606720000000 18340200994059104774216042792456552448000000000 45061049861794515973892725176632931778560000000 64825788906401665595238079205373710696448000000 26977844042874037990459727462452219084800000000 86413339779104677615191582780261302009856000000 13543416639200448280800512488710371321708544000 104866854586720398458213360669093265408000000000 27922969574680211848013944536344140185600000000 863068282073369636433696131409720115200000000 17155141852904516465728236950482436751360000000 82671025656949182040826085545188585827532800000 95706277611469567487291460947586475622400000000 52395721371612938500733243835772277096448000000 32543546466277033831999293657421499596800000000 50244870053486056890000364854004326334464000000 52069306270489642290015661721112281088000000000 53265183744174514294258878567234530181120000000 95306343627247313698490205280457981952000000000 47348826094699154145244811249054908416000000000 99043605018283913194631171212307864538316800000 10886950991818236470479992541666175090688000000 45451802463537781396970193007392325632000000000 89926146809580126634865758208174063616000000000 44730455129112739148768117525972307148800000000 11062343456734063197146184541481730048000000000 48415414660207789395232728265892548313088000000 539763594118700787781150653737616841113600000 81332922786502837712020192335168066620620800000 85556334049012294394296833896267907072000000000 42180556748667356076452374613698456584192000000 84422261942800176200086873354095537684480000000 20598846436677221125720481560000462848000000000 19222415706335837663226467684645842452480000000 17423190944356149535505240652833724825600000000 73440198785734510459523115078018662400000000 340436157138155635537296133354828603743535104000 4185684425307793901810848699785884467200000000 16021325006304505320004818991111471104000000000 27248222383258844743348594324723591230259200000 69452495684246663737739054530795929600000000 9292368503656613085602795014844653240320000000 643416902620278056392337986822785545011200000 21320887981012449580113764738355796377600000000 10259121127484242086744700707382839214080000000 53021297540690691032545544816681480699904000000 35970458723832050653946303283269625446400000000 40754710265334528867502212324691264143360000000 5106263968200799353066397974180365598720000000 5686342280995133623750453347901400678400000000 493774642147745128536585767489214873600000000 8434737634611138786645638192115477302476800000 39172210757022057293693923307003364507648000000 2754654694759865539210314727720747008000000000 31907055745695232093071628409780433715200000000 38021994164390256723610866884210677776384000000 15782276664940596827928556612513934868480000000 51411961863064065424312722298340848435200000000 7444555131394248481763696432818579046400000000 54205482937996909666016304253260477235200000000 46488680054745242313255801223870374543360000000 15205693915074457776440937297018523484160000000 24240961313886816745050769603942573670400000000 18128259700691628377286986432072839593984000000 140021135761780975197389540222765629440000000 26623118527526172384676620018127246196736000000 45310043255475109813109744445071409807360000000 28838385011348109576008674184000647987200000000 10472592295285654648995501893165040795648000000 623581629204852694039309364892178317312000000 13985169988780855814452367079197638656000000000 37169474014626452342411180059378612961280000000 27465128582236294834293975413333950464000000000 28862413259052476160201258442174758912000000000 13412383712074664044821770706213163499520000000 32109161007751178305562771540916201062400000000 569437217011310828848314363758090649600000000 69779517751398717777245250450446138739916800000 28353267251064044585729025161754260275200000000 12946024231100544546505441971145801728000000000 51386369605474358077066147547528036352000000000 124765287974111317636541221158977961040281600000 538517549119293951263790506902447718400000000 976161703249176100442910873255036321792000000 11946788661534713053741548609479607582720000000 32575690337066886098964685531363305062400000000 33833536167148278139880466510873089802240000000 18076369958019393413942062851228098887680000000 9956109111060656877431566087333557043200000000 17718990494052276486208343330694931415040000000 2283554718876581890607359557401434914816000000 34883256366901412615000968587472388751360000000 28528873885195599430458426480073207971840000000 2152752937194402041873791917519116697600000000 905100828278241534311960553393959731200000000 22124686913468126394292369082963460096000000000 9182182315866218464034382425735823360000000000 10244312269538728523883532474072160010240000000 18436479914123466716396777929020624863232000000 45503392185341222915795644071891428769792000000 71025463258509061952475924334727267352576000000 30382512980492564244674447569648468623360000000 23514844344258367966960058078640734208000000000 4213309942651756243782633764494780661760000000 27330495598990038487067044161307803648000000000 1711391592842560368359201908909387284480000000 20274258553432610368587916396024697978880000000 15150600821179260465656731002464108544000000000 1834020099405910477421604279245655244800000000 123520916565611941902809102393742090200678400000 3152767885169208011186662594322293063680000000 40459320516158206353777514670917649694720000000 9612795003782703192002891394666882662400000000 11223250270650195025468310862085100666880000000 1734435297628213980910023956390687539200000000 18646893318374474419269822772263518208000000000 18584737007313226171205590029689306480640000000 28055751581826920366233722073115119190016000000 36680401988118209548432085584913104896000000000 30301201642358520931313462004928217088000000000 61853109497827422684920270753487472558080000000 597189075912996620188185737680524410880000000 14994439255938574763054876418566101401600000000 17699749530774501115433895266370768076800000000 13532778560622363444744166509463889510400000000 10641493433923528184211275346968838144000000000 17261365641467392728673922628194402304000000000 34310283705809032931456473900964873502720000000 7053923459253501836236939535560212480000000000 55180905381803872967915934491227493105664000000 397855727334638914568691573740053463040000000 36979833841082439830460102610096069017600000000 16527928168559193235261888366324482048000000000 32958154298683553801152770496000740556800000000 45756288240942273153030304636717070548992000000 12120480656943408372525384801971286835200000000 11794160023871855070188162903456675266560000000 3245659812281974905497626966907462615040000000 19912218222121313754863132174667114086400000000 17816195251371701780667012998386365235200000000 3186233798147563160354499791254506700800000000 54530570191361741717765870109886780538880000000 3069424890348112014701375728885337948160000000 6147636099697064844029032723910334873600000000 59091836488556942580861007082964972994560000000 2906766121585891081348027161861370675200000000 17210748848742738557992295539335155102515200000 31104561942586516191471933657242891452416000000 20538832582314994803083833856809343385600000000 3144034456124417961294178764421123276800000000 10932198239596015394826817664523121459200000000 15386714080730106083303329407697315430400000000 1128627753480560293797910325689633996800000000 8197514080677933194535958520870731776000000000 50373634972327856242524133491595294015488000000 13222342534847354588209510693059585638400000000 794864188936660834620119203942131302400000000 12986229275296508970562912287826378752000000000 35494150128558491541645511897802342400000000 28339106491557611621877813439092976779264000000 7752400193944289763158440411140194304000000000 15375201833352882835717782541009409802240000000 12298723019545517319180169872588511641600000000 21198140670986938055440014201804526977024000000 12226800662706069849477361861637701632000000000 22725901231768890698485096503696162816000000000 26228005217118635125301994614949842780160000000 20248039362772169244776498491104952320000000000 3027881376651969876404194960272261120000000000 11543314911374674640500366478067892224000000000 7658545470046659136485820067179659264000000000 952737713977096351907326898309431296000000000 14107846918507003672473879071120424960000000000 22376271982049369303123787326716221849600000000 7453771526997283223745557498538491904000000000 5509309389519731078420629455441494016000000000 8506616755185649479099617495207053885440000000 20165917960706033445160011638467489431552000000 901005349417254016057155302021136384000000000 22961548468472854542650838137464783110144000000 21239699436929401338520674319644921692160000000 10559509663246151233639539789596196864000000000 25695689011782280128107979531441772953600000000 2597245855059301794112582457565275750400000000 20713638769760871274408707153833282764800000000 17864241107586515173276075826345410560000000000 10003745996759511695026932432249028608000000000 32502218632404366631615218390924892569600000000 7453771526997283223745557498538491904000000000 14977830811814935565609768280506184499200000000 12208224313047862575521903831836262400000000000 9673952172690516803982088505911148544000000000 9460556168881167168600130671221932032000000000 18889060764067649411727872418656550912000000000 10521362841844757352187705162060529664000000000 4987341554947875098455694916082898829312000000 18775893663726487941459306566318806794240000000 9224042264659137989385127404441383731200000000 8934969715054435659233456745042935808000000000 8892218663786232617801717717554692096000000000 15150600821179260465656731002464108544000000000 22894923528051297540725484958528787447808000000 8409383261227704149866782818863939584000000000 19234615028931888931458989943604924907520000000 8404093267698928605454326035840709427200000000 9785835785305044336063727756646044139520000000 4040160218981136124175128267323762278400000000 2000749199351902339005386486449805721600000000 7964887288848525501945252869866845634560000000 4148378796275273698929819203055648768000000000 8198554582454831257978212486619122892800000000 10737665702349148613383789656358571212800000000 1892111233776233433720026134244386406400000000 15048370046407470583972137675861786624000000000 6522050086122622820777362811221180416000000000 14672160795247283819372834233965241958400000000 30092338337001056226143795925676348932096000000 15553229425419756929679952919764024688640000000 9350933851368734596646510109476027105280000000 1746685808958009978496765980233957376000000000 4617325964549869856200146591227156889600000000 13760808972918061336145644612686446592000000000 3385883260441680881393730977068901990400000000 11671036996219430310864754504290533376000000000 15127227898823986942897543256450480996352000000 3452147389907395595612926469675679744000000000 1597236755785132119374048035401105408000000000 12671411595895381480367447747515436236800000000 11037315530361361696700152449758920704000000000 7598083268967343406460932014017714585600000000 18703979682318086246495341141295250800640000000 6060240328471704186262692400985643417600000000 13107799495243819362982143014330381107200000000 2285823268279166855281970966218470850560000000 5856534771212151104371509463137386496000000000 1933202538348141533543238823018380656640000000 2858213141931289055721980694928293888000000000 5643138767402801468989551628448169984000000000 1081553126505867783776929664128883097600000000 10248935849621264432650141560490426368000000000 4160231307121774480926761543635807764480000000 2703016048251762048171465906063409152000000000 10721963658065322791080148094051522969600000000 3556887465514493047120687087021876838400000000 10480114853748059870980595881403744256000000000 5194491710118603588225164915130551500800000000 7275618196544326179661529063820676300800000000 3363753304491081659946713127545575833600000000 2484590508999094407915185832846163968000000000 3668040198811820954843208558491310489600000000 4873619844575146723218249133659783168000000000 1396680722578566896730599446546816696320000000 14943924557876338901321301646772231208960000000 6879926680591915457609761693683060572160000000 9051008282782415343119605533939597312000000000 9029022027844482350383282605517071974400000000 3354197187148777450685500874342321356800000000 2839532010284679323331640951824187392000000000 5385349928255537129156165292694060400640000000 6986743235832039913987063920935829504000000000 870289257959847629146115916724961280000000000 1560884505323795290674252851787092459520000000 4001498398703804678010772972899611443200000000 2928267385606075552185754731568693248000000000 8536957427747465343503966399127386849280000000 3829272735023329568242910033589829632000000000 7621901711816770815258615186475450368000000000 3784222467552466867440052268488772812800000000 3726885763498641611872778749269245952000000000 18530542698459528992916540539763865681920000000 7208042795338032128457242416169091072000000000 7147975772043548527386765396034348646400000000 3513920862727290662622905677882431897600000000 3493371617916019956993531960467914752000000000 724080662622593227449568442715167784960000000 3318703037020218959143855362444519014400000000 2436809922287573361609124566829891584000000000 3194473511570264238748096070802210816000000000 3144034456124417961294178764421123276800000000 3123485211313147255664805047006606131200000000 10449254605084296251458192702241368965120000000 3017002760927471781039868511313199104000000000 4472262916198369934247334499123095142400000000 2924171906745088033930949480195869900800000000 5589394588665631931189651136748663603200000000 1856617083647674942178380622346584064000000000 2733049559899003848706704416130780364800000000 2715302484834724602935881660181879193600000000 2599263917106744919049732871285217689600000000 5111157618512422781996953713283537305600000000 2552848490015553045495273355726553088000000000 4781949376070042772948191590431420579840000000 4880445642676792586976257885947822080000000000 4192045941499223948392238352561497702400000000 2088694219103634309950678200139907072000000000 2552848490015553045495273355726553088000000000 4061349870479288936015207611383152640000000000 3713234167295349884356761244693168128000000000 4344483975735559364697410656291006709760000000 835477687641453723980271280055962828800000000 3573987886021774263693382698017174323200000000 2784925625471512413267570933519876096000000000 2111901932649230246727907957919239372800000000 1113970250188604965307028373407950438400000000 1021139396006221218198109342290621235200000000 16726263306581903554085031026720375832576000000000
Conjugacy classes   1 10 13 50 8 216 5 82 26 86 3 848 3 46 86 47 2 257 2 265 47 20 1 748 4 15 7 130 1 882 1 5 21 9 21 543 1 6 15 238 2 418 52 78 4 222 9 10 36 14 10 122 8 3 1920 2 45 8 153 20 6 147 337 1 12 15 7 105 80 868 5 4 49 473 6 10 3 4 6 20 13 53 34 118 15 58 2 41 37 3 4 15 4 1052 3 226 40 300 3 8 17 21 258 3 70 2 23 13 9 30 2 195 2 2 51 485 20 7 7 3 15 622 21 7 3 2 4 15 35 76 6 1 90 5 10 2 701 5 1 96 1 1 4 63 8 27 2 48 10 195 1 1 282 1 21 63 3 159 7 6 5 20 3 27 2 157 15 9 2 3 1 18 3 21 47 1 99 59 2 4 1 1 231 87 29 13 10 4 4 2 12 264 30 1 2 4 2 20 11 148 2 90 9 1 40 4 2 894 8 2 55 2 2 8 25 8 107 1 55 14 4 2 26 120 1 62 35 5 26 10 4 67 1 8 30 4 39 11 1 18 5 1 4 1 19 28 15 3 194 4 1 2 274 3 4 14 11 13 15 2 27 4 31 17 3 4 1 2 9 10 38 161 36 18 2 4 9 1 3 3 342 5 20 1 9 3 1 1 24 2 3 120 2 20 1 7 5 1 2 2 57 2 14 1 2 56 3 5 2 2 4 4 71 2 8 31 5 31 31 10 3 6 4 1 5 161 1 3 1 1 96 5 5 1 21 3 7 23 24 7 1 2 1 2 2 2 1 8 37 1 53 2 3 12 1 2 14 1 33 3 5 20 1 1 2 8 22 41 3 1 1 3 42 1 7 3 15 1 1 1 4 7 23 1 2 6 7 72 23 7 1 2 2 1 3 51 4 1 7 3 4 39 1 19 3 6 6 1 1 4 6 14 1 3 2 3 1 9 2 1 2 6 8 11 8 3 2 2 2 12 4 3 5 1 2 10 1 2 1 1 50 2 6 2 1 2 2 2 1 1 3 24 5 2 2 2 3 1 1 3 2 2 7 5 2 1 3 5 2 11 1 5 2 4 1 1 22365
Divisions 1 10 13 50 8 216 5 82 26 86 3 848 3 46 86 47 2 257 2 265 47 20 1 748 4 15 7 130 1 882 1 5 21 9 20 543 1 6 15 238 1 418 52 78 4 222 9 10 36 14 10 122 8 3 1920 2 45 8 153 20 6 147 337 1 11 15 7 105 80 868 5 4 49 473 6 10 3 4 6 20 13 53 34 117 15 58 1 41 37 3 4 15 4 1052 3 226 40 300 3 7 17 21 258 3 70 2 23 13 9 30 2 195 2 2 50 485 20 7 7 3 15 622 21 7 3 2 4 15 35 76 6 1 90 5 10 2 701 5 1 96 1 1 4 63 8 26 2 48 10 195 1 1 282 1 20 63 2 159 7 6 5 19 2 27 1 157 15 9 2 2 1 18 3 21 47 1 99 59 1 4 1 1 231 87 29 13 9 4 4 1 11 264 30 1 2 4 2 20 11 148 1 90 8 1 40 4 2 894 8 2 55 2 2 8 25 8 107 1 55 14 4 2 25 120 1 62 35 4 26 10 4 67 1 8 30 4 39 11 1 17 5 1 4 1 19 28 15 3 194 4 1 1 274 3 4 14 11 13 14 2 27 4 31 17 3 4 1 2 9 9 38 161 36 18 2 4 9 1 3 3 342 5 20 1 9 3 1 1 24 2 3 120 2 20 1 7 5 1 1 2 57 2 14 1 1 56 2 5 2 2 4 4 71 2 8 31 5 29 31 10 3 6 4 1 5 161 1 3 1 1 96 5 5 1 20 3 7 23 24 7 1 2 1 2 1 2 1 8 37 1 53 1 3 12 1 1 14 1 33 2 5 20 1 1 1 8 22 41 3 1 1 3 42 1 6 3 15 1 1 1 4 7 23 1 1 6 7 72 23 7 1 2 1 1 3 51 4 1 7 3 4 39 1 19 3 6 6 1 1 4 6 14 1 3 2 3 1 9 2 1 2 6 8 11 8 3 1 2 2 12 4 3 5 1 2 10 1 1 1 1 50 1 6 2 1 2 2 2 1 1 2 24 5 2 2 1 3 1 1 2 1 2 7 5 2 1 3 5 1 11 1 5 2 4 1 1 22317
Autjugacy classes 1 10 13 50 8 216 5 82 26 86 3 848 3 46 86 47 2 257 2 265 47 20 1 748 4 15 7 130 1 882 1 5 21 9 20 543 1 6 15 238 1 418 52 78 4 222 9 10 36 14 10 122 8 3 1920 2 44 8 153 20 6 147 337 1 11 15 7 105 80 868 5 4 49 473 6 10 3 4 6 20 13 53 34 117 15 58 1 41 37 3 4 15 4 1052 3 226 40 300 3 7 17 21 258 3 70 2 23 13 9 30 2 195 2 2 50 485 20 7 7 3 15 622 21 7 3 2 4 15 35 76 6 1 90 5 10 2 701 5 1 96 1 1 4 63 8 26 2 48 10 195 1 1 282 1 20 63 2 159 7 6 5 19 2 27 1 157 15 9 2 2 1 18 3 21 47 1 99 59 1 4 1 1 231 87 29 13 9 4 4 1 11 264 30 1 2 4 2 20 11 148 1 90 8 1 40 4 2 894 8 2 55 2 2 8 25 8 107 1 55 14 4 2 25 120 1 62 35 4 26 10 4 67 1 8 30 4 39 11 1 17 5 1 4 1 19 28 15 3 194 4 1 1 274 3 4 14 11 13 14 2 27 4 31 17 3 4 1 2 9 9 38 161 36 18 2 4 9 1 3 3 342 5 20 1 9 3 1 1 24 2 3 120 2 20 1 7 5 1 1 2 57 2 14 1 1 56 2 5 2 2 4 4 71 2 8 31 5 29 31 10 3 6 4 1 5 161 1 3 1 1 96 5 5 1 20 3 7 23 24 7 1 2 1 2 1 2 1 8 37 1 53 1 3 12 1 1 14 1 33 2 5 20 1 1 1 8 22 41 3 1 1 3 42 1 6 3 15 1 1 1 4 7 23 1 1 6 7 72 23 7 1 2 1 1 3 51 4 1 7 3 4 39 1 19 3 6 6 1 1 4 6 14 1 3 2 3 1 9 2 1 2 6 8 11 8 3 1 2 2 12 4 3 5 1 2 10 1 1 1 1 50 1 6 2 1 2 2 2 1 1 2 24 5 2 2 1 3 1 1 2 1 2 7 5 2 1 3 5 1 11 1 5 2 4 1 1 22316

Minimal presentations

Permutation degree:$41$
Transitive degree:not computed
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $41$ $\langle(1,2,3), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 41 | (1,2,3), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41) >;
 
Copy content gap:G := Group( (1,2,3), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41) );
 
Copy content sage:G = PermutationGroup(['(1,2,3)', '(3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)'])
 
Transitive group: 41T9 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as permutations of degree 41.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

Subgroup data has not been computed.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $22365 \times 22365$ character table is not available for this group.

Rational character table

The $22317 \times 22317$ rational character table is not available for this group.