Properties

Label 167...048.u
Order \( 2^{20} \cdot 3^{13} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{23} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,22,21,6,36,26,18,8,3,23,19,5,34,27,17,7,2,24,20,4,35,25,16,9)(10,11)(14,15)(28,29), (1,32,21,11,35,28,16,15,3,31,20,12,36,30,17,13)(2,33,19,10,34,29,18,14)(4,6)(22,25,24,26,23,27), (1,6,29,36,9,32,2,4,28,35,8,33,3,5,30,34,7,31)(10,19,25,15,18,22)(11,21,26,13,17,24)(12,20,27,14,16,23) >;
 
Copy content gap:G := Group( (1,22,21,6,36,26,18,8,3,23,19,5,34,27,17,7,2,24,20,4,35,25,16,9)(10,11)(14,15)(28,29), (1,32,21,11,35,28,16,15,3,31,20,12,36,30,17,13)(2,33,19,10,34,29,18,14)(4,6)(22,25,24,26,23,27), (1,6,29,36,9,32,2,4,28,35,8,33,3,5,30,34,7,31)(10,19,25,15,18,22)(11,21,26,13,17,24)(12,20,27,14,16,23) );
 
Copy content sage:G = PermutationGroup(['(1,22,21,6,36,26,18,8,3,23,19,5,34,27,17,7,2,24,20,4,35,25,16,9)(10,11)(14,15)(28,29)', '(1,32,21,11,35,28,16,15,3,31,20,12,36,30,17,13)(2,33,19,10,34,29,18,14)(4,6)(22,25,24,26,23,27)', '(1,6,29,36,9,32,2,4,28,35,8,33,3,5,30,34,7,31)(10,19,25,15,18,22)(11,21,26,13,17,24)(12,20,27,14,16,23)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(362207085306527577174181874506481766159151007996107165672095545868618026314315176128564189472491911977143268888487718072883132142918378608870998441627006330916357330545886704839169234267535723611172733933650765593098924487911358088210627788276633510458445843272373180260344177584773127360394246822646534956490771954371389552471054499587783529671162409639172104151979834301321470799561747661484258023337114911166671292074077565835375736155844356907682705006812482262417295124145326173743414188813113913567922883623825925208750489154199936868710438201437886093924277893425602064942324508827370516927006458897484713516012203780200161159726193237873185953021577762398841877513360292879116861624066947207817163249697497435868238022530208604570323967156236443422977667134783407821947117428166487652496052622094154650112752664677105393195491625827120404804351956232452799484063500665387464098507972133077257702397544153641121068720138758311740160569583527791837504443974511274085021785167861987982809310213679417540506194293143828037663904171046003077357570837059956306044559906136553387521261463563430510468233424882822790374126152573532226004326234332798456316980651701628110714524658804775442525208789471459438399904527193240369085103468561991026468421572622819732991225740707532097194396125714919425926788619960626742136741963785348758605255748184248572059727477792262958386469587166288047868664032798949621673746823522870427788993905022585187266175148735987935318193754332186541216153972075698534282020396440828287430190796213953096573204996017002817041325516803319132296420913203087766749829414532320405699653273637346604133931438669095582563025938381428952921484060675530544435409049868151985345675083537881828722231179019946110942603653236473728998726203444303510554302173162464033023456884891025967607393018691851819621562748702851491652234083144737957154124097762372935817016960090936108086569354267339286294628163660587120298449694075826038188646941925498039339123956152012899435571376954950297501799789889063176046359293544844566172182818008134463792089480390831915055083953150500231711463526253013378712343100567669195298755050468418536422549540138865255622440395695973331903260729438047480332950282204897329242783176652891375355960957480938849521581883761751751525041162117578341629278816343020545394486286560688426198242223826163990153818949979751864621102930330295137019352363001165396948305859516177885601084061574554369422728011560925060079288161851398298836560370787554897474077346907054453688997789659449989072933615598252670897353747881568805208524925662477149527280165422760172523218016681539768791441977831983412983898243013048945007052915534455809818419609789433423220642947359347118843355764336637160414835153415060730972714981565584442319956048922941396422160309473989148844498530318579390697378196576833544998717693310523969152502611219772111109745424127686732276099177722901937920313438004526687821129584110272181153427697039992313307313970789462852138006506502309129020397470593755074554291334552525565962498351263364101631642744419674485031810803630028512881066363941505352274245064770889341753878254103946026301476767020476004035668131839272638099125402021641321422588507831071075098697602114797260995539751174719543135220081769356664253084618465449420020185628905905578612519550000216784304139728478005464332715207353410170642446982890214696099664372284791511298968023717752523613454757774945267093825934795783802890478466603276454562878426492036238167686210702045925689919753290018503330724734180499881982263832410751935532671821621087361010367952814886944567059051221276408274857761380453556175450206935537630381643298892178206328176899209606098369416936259614726327181072678506783038179580132013371077637818087872168159772877042600212347422804570840113922662928660333167921522781526447848940736576988726527705056619493945340627316622119205111462460102661198621960545701761356207871254128745442633542741589544660298248143767312347745599868494443119844074830886085800858513137702229206031645741210810226162176783497796645798837161465945030407940549316724716217045583465983418708615986395105599628151992117056737833747990713777541830357047437811344288653939182457638327127481519080335971982760668564814313556000626719166183842452325235338853783019560676717805248168688163791193255188763150096126450066971387974832927143459282965593697100307551382736223130666508747610206983119127984910559852126858096959671043457545800353378945472677395043919692744620303510236269370254139014604693597294801726811493097743027095253024470988139961128336065059186723240394744146429556317443816686341983764165323545427764296966639774319985293233103449614456313339861916286356936616309327567606804841365087279095403687885835125258639542566559972170688208589864537027756490843225951261250347326406628942049779458222114772378391075046945744027349413742412245067455867986695280461502890306614552082378554933900876806106543863111597498657457888753853408880850171632871769410725784243499151788259951877039737816896497001399813605076093064807385745191842374276337577439655337591886255055077854614718141208864589831084156513160590357369631096580507019171580917512141916620227684120220691398601942366041904535772413307148503784646592039104976063,1671768834048)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.17; k = G.19; l = G.22; m = G.24; n = G.27; o = G.29; p = G.30; q = G.31; r = G.32; s = G.33;
 

Group information

Description:$C_3^{12}.C_2^6.C_2^6.C_2^6.D_6$
Order: \(1671768834048\)\(\medspace = 2^{20} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(13374150672384\)\(\medspace = 2^{23} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 20, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$6$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 48
Elements 1 62724159 215522288 22015682496 68267302416 115485917184 17199267840 518185354752 37408407552 278628139008 485306007552 61917364224 67077144576 1671768834048
Conjugacy classes   1 135 57 418 5891 118 8 6532 14 16 416 4 28 13638
Divisions 1 135 57 414 5889 102 5 6486 10 9 336 2 16 13462

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid c^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([33, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 22304181074868, 26146925549581, 166, 149870346423734, 31171105152068, 138563650646787, 45907776528804, 24952567092225, 141870311924224, 41416316648227, 65060808390835, 21702043251013, 466, 1296914927621, 94577181355046, 2650106916935, 10018948516736, 6665339248298, 228868240098966, 51144584048751, 7015321281348, 474762970017, 3095491414230, 7296817357077, 666, 298881955823623, 76816267444264, 28938689151049, 3232086952651, 6836135658700, 82516017646, 365839765790408, 181625928501641, 5927674923002, 13354713074843, 11728781502116, 4806358292117, 76102240706, 1642430919137, 1096040854928, 380162957304249, 134798142493122, 123522190555575, 7223563253388, 18866512083021, 5396677582734, 5447605825407, 1305293300760, 856217595693, 966, 60133430730394, 40368670419571, 129644697880048, 46807670093293, 4284184707406, 4873356300559, 293533514944, 862864373161, 1417220629054, 223831239532, 101196019153163, 46229206598828, 128251010752205, 31463704673390, 22289509465487, 13769016890288, 4379815465553, 2563550878130, 597794621171, 344503750052, 346014365741, 1166, 673920310542348, 218895081799725, 53210592534606, 34516087896687, 24062062362768, 102526442514, 1688347072116, 504943272285, 379029987678, 407709978967381, 226767969281746, 111049892693665, 22604608975984, 15431297540881, 15551846010802, 3459861525331, 3367113051700, 1357995105205, 101083266286, 322813044127, 103384664836, 101529214195, 1366, 348418486152014, 246676081307087, 70998936331040, 16533738017393, 20729236746386, 3849537099059, 47298968852, 35473585205, 1693216530998, 23917628111, 149121953984, 39544297037, 3695586260, 1466, 816098379300879, 217553921114160, 103227339866193, 65486113161330, 29805565870227, 16371528290484, 126187235541, 512398614072, 553386493785, 131251925754, 352561794243532, 258269134515727, 207089352076645, 45136432687219, 16953879930388, 1429825098421, 2257046795734, 4088637869431, 2057720031064, 944519062525, 541213781674, 6080329315, 837589120, 758434297, 18496806652, 12249441682, 1666, 15482784341393, 262742048927474, 216167702344787, 66721736835188, 12600326255765, 5947987313879, 3887895864056, 1997158167065, 1102669894970, 82640264603, 323154837308, 443461805, 1979160926, 21867122063, 17706530, 149515920002214, 263015173379229, 94117808298873, 38294732095605, 33680731675950, 3236031710391, 8954677163736, 4890326006265, 1344302366106, 264840210675, 449333942460, 180434699661, 14817675759, 2223365052, 877611159, 4343782560, 2305687116, 1866, 946930188568339, 360518181598132, 219079739482645, 16274205573238, 36683474488471, 18866677801144, 7712728658137, 166865910010, 178028928283, 824982650236, 230173004509, 161109337342, 38596251328, 14288171521, 13672098514, 343292947, 1358411260, 1966, 1150483363577876, 309721821438005, 49576512319574, 78636913496183, 2251695334040, 18441561600185, 4784267981018, 124176375035, 848752515389, 430431237278, 7761023807, 48954180185, 905513090, 50312348, 10786433, 143054497165557, 128607750699174, 282000612118191, 13435537029705, 149459448027, 43416705276, 2965613866269, 890738515974, 748027374687, 363656304384, 1898728545, 249024258, 135803139, 3020328981, 1520514654, 66325071, 249673500, 1571019, 2166, 603980458887190, 529436261680183, 3918301821016, 18185469401242, 112310821084, 1478465354047, 797979714400, 188682494209, 284607235, 189519748, 2785846294, 15793855, 931457560, 5265073, 801012934741559, 577902634029128, 2053143904769, 28425360072539, 3142162907324, 8547534471389, 5136955490558, 1575220027679, 161419832960, 300407906657, 2093921666, 2081604515, 59589168068, 17689529573, 17294353286, 4489500071, 850057352, 450338153, 446983274, 8568539, 7561148, 40148021, 2366, 334239166008024, 286156103349657, 106960128778890, 499260326556, 13128475852989, 13185956045022, 59943629055, 222119885088, 1303372976721, 866034893154, 667181187, 641520420, 249480453, 17248334886, 17092231719, 3014550552, 304009785, 97099818, 47342451, 2168784, 40046217, 40041300, 2466, 641441060941849, 19678242355258, 345313140277339, 2561974594, 863616619363, 36012937414, 3001078633, 999556891, 247756, 233954760720410, 318413592870971, 314098693468652, 574674642590, 14196490666175, 14228416807136, 242106568994, 1358414109683, 89792271716, 74328047303, 18595869032, 18471157577, 457276010, 302541419, 610471052, 48884477, 43688231, 42758060, 161165, 27548, 2666, 618733340983323, 590127518711868, 223027028066397, 44144787681, 1860097333572, 8277148005, 689762760, 114960873, 57480747, 9580620, 399888, 67314, 22995, 1189487604400156, 594743802200125, 314260979282014, 548656644256, 476264773, 1428793702, 119066569, 357198826, 9922732, 29767117, 138529, 46723, 69724, 334176041041949, 448135503298622, 322259685580895, 33014439152801, 26770660393154, 6621718118627, 283787919620, 1664790589766, 32517366119, 17736745352, 2709780938, 739031531, 164229677, 61586510, 2281682, 547268, 143381, 303087600009246, 848775295475775, 100160470891104, 17964377587362, 24583916814531, 6402570780900, 513183154437, 715350607815, 1105787511144, 286374528393, 92148959691, 1909164012, 360620334, 159097551, 1256866608, 63639441, 105770739, 9183237, 921522, 148200, 1395311624847391, 470950840369216, 250046121295969, 43289025331363, 4616283488485, 7857772167430, 4061320446247, 1993436172616, 507665056105, 249891029386, 34028274124, 5386715629, 4817388079, 448893520, 919683697, 394150546, 80138452, 6488854, 5487799, 913273, 82828234063904, 78562196545601, 418303416554594, 8534046039716, 27834865090757, 8402487312614, 6958716272903, 3440337297704, 2315026309001, 147954014570, 361755694475, 12329501645, 17003873006, 2811397808, 1416989969, 1202465714, 287914835, 100206149, 11605175, 4104176, 667358]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.10, G.12, G.14, G.17, G.19, G.22, G.24, G.27, G.29, G.30, G.31, G.32, G.33]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "i4", "j", "j2", "k", "k2", "k4", "l", "l2", "m", "m2", "m4", "n", "n2", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(362207085306527577174181874506481766159151007996107165672095545868618026314315176128564189472491911977143268888487718072883132142918378608870998441627006330916357330545886704839169234267535723611172733933650765593098924487911358088210627788276633510458445843272373180260344177584773127360394246822646534956490771954371389552471054499587783529671162409639172104151979834301321470799561747661484258023337114911166671292074077565835375736155844356907682705006812482262417295124145326173743414188813113913567922883623825925208750489154199936868710438201437886093924277893425602064942324508827370516927006458897484713516012203780200161159726193237873185953021577762398841877513360292879116861624066947207817163249697497435868238022530208604570323967156236443422977667134783407821947117428166487652496052622094154650112752664677105393195491625827120404804351956232452799484063500665387464098507972133077257702397544153641121068720138758311740160569583527791837504443974511274085021785167861987982809310213679417540506194293143828037663904171046003077357570837059956306044559906136553387521261463563430510468233424882822790374126152573532226004326234332798456316980651701628110714524658804775442525208789471459438399904527193240369085103468561991026468421572622819732991225740707532097194396125714919425926788619960626742136741963785348758605255748184248572059727477792262958386469587166288047868664032798949621673746823522870427788993905022585187266175148735987935318193754332186541216153972075698534282020396440828287430190796213953096573204996017002817041325516803319132296420913203087766749829414532320405699653273637346604133931438669095582563025938381428952921484060675530544435409049868151985345675083537881828722231179019946110942603653236473728998726203444303510554302173162464033023456884891025967607393018691851819621562748702851491652234083144737957154124097762372935817016960090936108086569354267339286294628163660587120298449694075826038188646941925498039339123956152012899435571376954950297501799789889063176046359293544844566172182818008134463792089480390831915055083953150500231711463526253013378712343100567669195298755050468418536422549540138865255622440395695973331903260729438047480332950282204897329242783176652891375355960957480938849521581883761751751525041162117578341629278816343020545394486286560688426198242223826163990153818949979751864621102930330295137019352363001165396948305859516177885601084061574554369422728011560925060079288161851398298836560370787554897474077346907054453688997789659449989072933615598252670897353747881568805208524925662477149527280165422760172523218016681539768791441977831983412983898243013048945007052915534455809818419609789433423220642947359347118843355764336637160414835153415060730972714981565584442319956048922941396422160309473989148844498530318579390697378196576833544998717693310523969152502611219772111109745424127686732276099177722901937920313438004526687821129584110272181153427697039992313307313970789462852138006506502309129020397470593755074554291334552525565962498351263364101631642744419674485031810803630028512881066363941505352274245064770889341753878254103946026301476767020476004035668131839272638099125402021641321422588507831071075098697602114797260995539751174719543135220081769356664253084618465449420020185628905905578612519550000216784304139728478005464332715207353410170642446982890214696099664372284791511298968023717752523613454757774945267093825934795783802890478466603276454562878426492036238167686210702045925689919753290018503330724734180499881982263832410751935532671821621087361010367952814886944567059051221276408274857761380453556175450206935537630381643298892178206328176899209606098369416936259614726327181072678506783038179580132013371077637818087872168159772877042600212347422804570840113922662928660333167921522781526447848940736576988726527705056619493945340627316622119205111462460102661198621960545701761356207871254128745442633542741589544660298248143767312347745599868494443119844074830886085800858513137702229206031645741210810226162176783497796645798837161465945030407940549316724716217045583465983418708615986395105599628151992117056737833747990713777541830357047437811344288653939182457638327127481519080335971982760668564814313556000626719166183842452325235338853783019560676717805248168688163791193255188763150096126450066971387974832927143459282965593697100307551382736223130666508747610206983119127984910559852126858096959671043457545800353378945472677395043919692744620303510236269370254139014604693597294801726811493097743027095253024470988139961128336065059186723240394744146429556317443816686341983764165323545427764296966639774319985293233103449614456313339861916286356936616309327567606804841365087279095403687885835125258639542566559972170688208589864537027756490843225951261250347326406628942049779458222114772378391075046945744027349413742412245067455867986695280461502890306614552082378554933900876806106543863111597498657457888753853408880850171632871769410725784243499151788259951877039737816896497001399813605076093064807385745191842374276337577439655337591886255055077854614718141208864589831084156513160590357369631096580507019171580917512141916620227684120220691398601942366041904535772413307148503784646592039104976063,1671768834048); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.10; h := G.12; i := G.14; j := G.17; k := G.19; l := G.22; m := G.24; n := G.27; o := G.29; p := G.30; q := G.31; r := G.32; s := G.33;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(362207085306527577174181874506481766159151007996107165672095545868618026314315176128564189472491911977143268888487718072883132142918378608870998441627006330916357330545886704839169234267535723611172733933650765593098924487911358088210627788276633510458445843272373180260344177584773127360394246822646534956490771954371389552471054499587783529671162409639172104151979834301321470799561747661484258023337114911166671292074077565835375736155844356907682705006812482262417295124145326173743414188813113913567922883623825925208750489154199936868710438201437886093924277893425602064942324508827370516927006458897484713516012203780200161159726193237873185953021577762398841877513360292879116861624066947207817163249697497435868238022530208604570323967156236443422977667134783407821947117428166487652496052622094154650112752664677105393195491625827120404804351956232452799484063500665387464098507972133077257702397544153641121068720138758311740160569583527791837504443974511274085021785167861987982809310213679417540506194293143828037663904171046003077357570837059956306044559906136553387521261463563430510468233424882822790374126152573532226004326234332798456316980651701628110714524658804775442525208789471459438399904527193240369085103468561991026468421572622819732991225740707532097194396125714919425926788619960626742136741963785348758605255748184248572059727477792262958386469587166288047868664032798949621673746823522870427788993905022585187266175148735987935318193754332186541216153972075698534282020396440828287430190796213953096573204996017002817041325516803319132296420913203087766749829414532320405699653273637346604133931438669095582563025938381428952921484060675530544435409049868151985345675083537881828722231179019946110942603653236473728998726203444303510554302173162464033023456884891025967607393018691851819621562748702851491652234083144737957154124097762372935817016960090936108086569354267339286294628163660587120298449694075826038188646941925498039339123956152012899435571376954950297501799789889063176046359293544844566172182818008134463792089480390831915055083953150500231711463526253013378712343100567669195298755050468418536422549540138865255622440395695973331903260729438047480332950282204897329242783176652891375355960957480938849521581883761751751525041162117578341629278816343020545394486286560688426198242223826163990153818949979751864621102930330295137019352363001165396948305859516177885601084061574554369422728011560925060079288161851398298836560370787554897474077346907054453688997789659449989072933615598252670897353747881568805208524925662477149527280165422760172523218016681539768791441977831983412983898243013048945007052915534455809818419609789433423220642947359347118843355764336637160414835153415060730972714981565584442319956048922941396422160309473989148844498530318579390697378196576833544998717693310523969152502611219772111109745424127686732276099177722901937920313438004526687821129584110272181153427697039992313307313970789462852138006506502309129020397470593755074554291334552525565962498351263364101631642744419674485031810803630028512881066363941505352274245064770889341753878254103946026301476767020476004035668131839272638099125402021641321422588507831071075098697602114797260995539751174719543135220081769356664253084618465449420020185628905905578612519550000216784304139728478005464332715207353410170642446982890214696099664372284791511298968023717752523613454757774945267093825934795783802890478466603276454562878426492036238167686210702045925689919753290018503330724734180499881982263832410751935532671821621087361010367952814886944567059051221276408274857761380453556175450206935537630381643298892178206328176899209606098369416936259614726327181072678506783038179580132013371077637818087872168159772877042600212347422804570840113922662928660333167921522781526447848940736576988726527705056619493945340627316622119205111462460102661198621960545701761356207871254128745442633542741589544660298248143767312347745599868494443119844074830886085800858513137702229206031645741210810226162176783497796645798837161465945030407940549316724716217045583465983418708615986395105599628151992117056737833747990713777541830357047437811344288653939182457638327127481519080335971982760668564814313556000626719166183842452325235338853783019560676717805248168688163791193255188763150096126450066971387974832927143459282965593697100307551382736223130666508747610206983119127984910559852126858096959671043457545800353378945472677395043919692744620303510236269370254139014604693597294801726811493097743027095253024470988139961128336065059186723240394744146429556317443816686341983764165323545427764296966639774319985293233103449614456313339861916286356936616309327567606804841365087279095403687885835125258639542566559972170688208589864537027756490843225951261250347326406628942049779458222114772378391075046945744027349413742412245067455867986695280461502890306614552082378554933900876806106543863111597498657457888753853408880850171632871769410725784243499151788259951877039737816896497001399813605076093064807385745191842374276337577439655337591886255055077854614718141208864589831084156513160590357369631096580507019171580917512141916620227684120220691398601942366041904535772413307148503784646592039104976063,1671768834048)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.17; k = G.19; l = G.22; m = G.24; n = G.27; o = G.29; p = G.30; q = G.31; r = G.32; s = G.33;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(362207085306527577174181874506481766159151007996107165672095545868618026314315176128564189472491911977143268888487718072883132142918378608870998441627006330916357330545886704839169234267535723611172733933650765593098924487911358088210627788276633510458445843272373180260344177584773127360394246822646534956490771954371389552471054499587783529671162409639172104151979834301321470799561747661484258023337114911166671292074077565835375736155844356907682705006812482262417295124145326173743414188813113913567922883623825925208750489154199936868710438201437886093924277893425602064942324508827370516927006458897484713516012203780200161159726193237873185953021577762398841877513360292879116861624066947207817163249697497435868238022530208604570323967156236443422977667134783407821947117428166487652496052622094154650112752664677105393195491625827120404804351956232452799484063500665387464098507972133077257702397544153641121068720138758311740160569583527791837504443974511274085021785167861987982809310213679417540506194293143828037663904171046003077357570837059956306044559906136553387521261463563430510468233424882822790374126152573532226004326234332798456316980651701628110714524658804775442525208789471459438399904527193240369085103468561991026468421572622819732991225740707532097194396125714919425926788619960626742136741963785348758605255748184248572059727477792262958386469587166288047868664032798949621673746823522870427788993905022585187266175148735987935318193754332186541216153972075698534282020396440828287430190796213953096573204996017002817041325516803319132296420913203087766749829414532320405699653273637346604133931438669095582563025938381428952921484060675530544435409049868151985345675083537881828722231179019946110942603653236473728998726203444303510554302173162464033023456884891025967607393018691851819621562748702851491652234083144737957154124097762372935817016960090936108086569354267339286294628163660587120298449694075826038188646941925498039339123956152012899435571376954950297501799789889063176046359293544844566172182818008134463792089480390831915055083953150500231711463526253013378712343100567669195298755050468418536422549540138865255622440395695973331903260729438047480332950282204897329242783176652891375355960957480938849521581883761751751525041162117578341629278816343020545394486286560688426198242223826163990153818949979751864621102930330295137019352363001165396948305859516177885601084061574554369422728011560925060079288161851398298836560370787554897474077346907054453688997789659449989072933615598252670897353747881568805208524925662477149527280165422760172523218016681539768791441977831983412983898243013048945007052915534455809818419609789433423220642947359347118843355764336637160414835153415060730972714981565584442319956048922941396422160309473989148844498530318579390697378196576833544998717693310523969152502611219772111109745424127686732276099177722901937920313438004526687821129584110272181153427697039992313307313970789462852138006506502309129020397470593755074554291334552525565962498351263364101631642744419674485031810803630028512881066363941505352274245064770889341753878254103946026301476767020476004035668131839272638099125402021641321422588507831071075098697602114797260995539751174719543135220081769356664253084618465449420020185628905905578612519550000216784304139728478005464332715207353410170642446982890214696099664372284791511298968023717752523613454757774945267093825934795783802890478466603276454562878426492036238167686210702045925689919753290018503330724734180499881982263832410751935532671821621087361010367952814886944567059051221276408274857761380453556175450206935537630381643298892178206328176899209606098369416936259614726327181072678506783038179580132013371077637818087872168159772877042600212347422804570840113922662928660333167921522781526447848940736576988726527705056619493945340627316622119205111462460102661198621960545701761356207871254128745442633542741589544660298248143767312347745599868494443119844074830886085800858513137702229206031645741210810226162176783497796645798837161465945030407940549316724716217045583465983418708615986395105599628151992117056737833747990713777541830357047437811344288653939182457638327127481519080335971982760668564814313556000626719166183842452325235338853783019560676717805248168688163791193255188763150096126450066971387974832927143459282965593697100307551382736223130666508747610206983119127984910559852126858096959671043457545800353378945472677395043919692744620303510236269370254139014604693597294801726811493097743027095253024470988139961128336065059186723240394744146429556317443816686341983764165323545427764296966639774319985293233103449614456313339861916286356936616309327567606804841365087279095403687885835125258639542566559972170688208589864537027756490843225951261250347326406628942049779458222114772378391075046945744027349413742412245067455867986695280461502890306614552082378554933900876806106543863111597498657457888753853408880850171632871769410725784243499151788259951877039737816896497001399813605076093064807385745191842374276337577439655337591886255055077854614718141208864589831084156513160590357369631096580507019171580917512141916620227684120220691398601942366041904535772413307148503784646592039104976063,1671768834048)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.17; k = G.19; l = G.22; m = G.24; n = G.27; o = G.29; p = G.30; q = G.31; r = G.32; s = G.33;
 
Permutation group:Degree $36$ $\langle(1,22,21,6,36,26,18,8,3,23,19,5,34,27,17,7,2,24,20,4,35,25,16,9)(10,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,22,21,6,36,26,18,8,3,23,19,5,34,27,17,7,2,24,20,4,35,25,16,9)(10,11)(14,15)(28,29), (1,32,21,11,35,28,16,15,3,31,20,12,36,30,17,13)(2,33,19,10,34,29,18,14)(4,6)(22,25,24,26,23,27), (1,6,29,36,9,32,2,4,28,35,8,33,3,5,30,34,7,31)(10,19,25,15,18,22)(11,21,26,13,17,24)(12,20,27,14,16,23) >;
 
Copy content gap:G := Group( (1,22,21,6,36,26,18,8,3,23,19,5,34,27,17,7,2,24,20,4,35,25,16,9)(10,11)(14,15)(28,29), (1,32,21,11,35,28,16,15,3,31,20,12,36,30,17,13)(2,33,19,10,34,29,18,14)(4,6)(22,25,24,26,23,27), (1,6,29,36,9,32,2,4,28,35,8,33,3,5,30,34,7,31)(10,19,25,15,18,22)(11,21,26,13,17,24)(12,20,27,14,16,23) );
 
Copy content sage:G = PermutationGroup(['(1,22,21,6,36,26,18,8,3,23,19,5,34,27,17,7,2,24,20,4,35,25,16,9)(10,11)(14,15)(28,29)', '(1,32,21,11,35,28,16,15,3,31,20,12,36,30,17,13)(2,33,19,10,34,29,18,14)(4,6)(22,25,24,26,23,27)', '(1,6,29,36,9,32,2,4,28,35,8,33,3,5,30,34,7,31)(10,19,25,15,18,22)(11,21,26,13,17,24)(12,20,27,14,16,23)'])
 
Transitive group: 36T119728 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^9.(C_2^8.S_4))$ $(C_3^{12}.C_2^6.C_2^6.C_2^5)$ . $S_4$ (7) $(C_3^{12}.C_2^6.C_2^6.C_2^6)$ . $D_6$ $(C_3^{12}.C_2^6.C_2^5)$ . $(C_2\wr S_4)$ (4) all 33

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 98 normal subgroups (54 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_2^6.C_2^6.C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^6.C_2^5.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $13638 \times 13638$ character table is not available for this group.

Rational character table

The $13462 \times 13462$ rational character table is not available for this group.