Properties

Label 417942208512.cw
Order \( 2^{18} \cdot 3^{13} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 3 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{23} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. not computed
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,6,12,34,9,13,2,4,11,36,7,14)(3,5,10,35,8,15)(16,23,28,19,26,32,17,22,30,21,25,33)(18,24,29,20,27,31), (1,7,33)(2,8,32)(3,9,31)(4,28,36,5,30,35)(6,29,34)(10,20,22,12,21,23,11,19,24)(13,17,25,14,16,26)(15,18,27), (1,14,24,2,13,23,3,15,22)(4,20,31,5,21,32,6,19,33)(7,18,28,8,17,29,9,16,30)(10,25,35,11,26,36,12,27,34), (1,28,27,35,33,22)(2,30,26,36,31,24)(3,29,25,34,32,23)(4,17,10,8,19,13,5,18,12,7,20,15,6,16,11,9,21,14) >;
 
Copy content gap:G := Group( (1,6,12,34,9,13,2,4,11,36,7,14)(3,5,10,35,8,15)(16,23,28,19,26,32,17,22,30,21,25,33)(18,24,29,20,27,31), (1,7,33)(2,8,32)(3,9,31)(4,28,36,5,30,35)(6,29,34)(10,20,22,12,21,23,11,19,24)(13,17,25,14,16,26)(15,18,27), (1,14,24,2,13,23,3,15,22)(4,20,31,5,21,32,6,19,33)(7,18,28,8,17,29,9,16,30)(10,25,35,11,26,36,12,27,34), (1,28,27,35,33,22)(2,30,26,36,31,24)(3,29,25,34,32,23)(4,17,10,8,19,13,5,18,12,7,20,15,6,16,11,9,21,14) );
 
Copy content sage:G = PermutationGroup(['(1,6,12,34,9,13,2,4,11,36,7,14)(3,5,10,35,8,15)(16,23,28,19,26,32,17,22,30,21,25,33)(18,24,29,20,27,31)', '(1,7,33)(2,8,32)(3,9,31)(4,28,36,5,30,35)(6,29,34)(10,20,22,12,21,23,11,19,24)(13,17,25,14,16,26)(15,18,27)', '(1,14,24,2,13,23,3,15,22)(4,20,31,5,21,32,6,19,33)(7,18,28,8,17,29,9,16,30)(10,25,35,11,26,36,12,27,34)', '(1,28,27,35,33,22)(2,30,26,36,31,24)(3,29,25,34,32,23)(4,17,10,8,19,13,5,18,12,7,20,15,6,16,11,9,21,14)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(273606078228323540520616696598414593771027345500183586840191723742684976645613651262568162324245054317963665270126261155973002925700573557211300116501998137475793386601184991126864175871873357717734726341162864060703684399466417278756660562635164996104417663996938510441609006780767494860002534134742848442186475202307179817560082459271268917174392812014356088655632286476325220660379877270361620419624214323451306147002825192662673175023838434678883085966249360670413681060868651506090029371071843010793648504690153538050070409189383632463396522121001881717319323047879967462782068744810628082248694108973414464690497091859090174025678674848179290368789338976745745719469391735583462733237532505760607542246634280490016093232055420882752381367086552327090430191546808686908116134328132026648835749738412663146241863786570877879691506940989637288872303872469026421973412039732211859250931012988088896428510787359024750084729293798689290892933259431116612468984025596747633617731451382835197634276802158892179761494234916811189674203404088238656999408939551727894895470238959827308749054036926434329858767288759105049583553753326665379106766990275388360094950229684844826792750287556202989456976220472366490402535672976345109088123201409644198062262525483127794376948855426733743597123563932825895412806859339549897924320255025608895137445422153072176406368772399201179529238723768093106711008734400583490230037181825144900854788249376207617298785135646320267383021925247689279870863632274730735986593335295276972492083218532584913587178406032214715678624702373844713121713754243768299080453199498674025857667732724754923313837497403401008343346278517568668235953632375128627592240565248182756245704684952034745044269678743483602555061706836248681201307708207428368012572773888028565600668197234679943104895868485597070815335576580118429386135841101585913146824492803368936150521481129364118809789355801784552420302802361178983529039991084644996790026343006501627505801943069767033724573236217013668823774744573342901503503194104825075276798530451323068314356193494324190592950694554316993919448930810525789621623143157077955077447397236590677081900922414499360330982958549826365412140390085257044467728283387732565646486492661164421728157174374494286238499617516584325414180822734388133722126412667014645517066459604249878167441866511105063500003856682945307506112270031748818789017570597771660260901490586030176711117069568999177921351819712778135340265412591356610896714972048081249890612610646560324067424907815461708096694454636954151747373659037441567777150526629918673408548429425411848190594538523268882784975501040612939408840219046937980989813320257004205997710656952325973468494608995609837877259970691737334915432148324327502348438556337076637108123386002168591090682723337418482476039976269122739071113027837078899942796738491838891195556650834059646346185775255029898808920975450267864656716773624296274067400387705334537620605285307858646113187936583865009413015226545411235340395473119161954468097243482862710316064923984056470084283503540322109549322832553936554668617760588466381439155891358983269207033039336453683503747245894769670620662722870518665247960313909929310717886730155905566105510402568089313334318489892825612655815258804172282847421505943877229678862305223452756207847803769981690006964122211170035199032210077190091403308820455070627975632548187802779749099592273946307936372323285483698031197011305233664648071805451811857782518587858469672724501385046613350620077298425926013686543992963101358287328715748114258762380489002439116299606475671180474692271106421738174736460925909215552713920737760012470257667130442468592955399330167379528526775147753290842492824086188339274215846437281587949696852320186467050826544920686218763395327930727091743182534947226773990770752040492627157257756083991598386853554470205004785704849270757545914084582322996408485353192643007957514799565505304141088372851624536898343875109023816368537617835591385270274547006740214893292973170168187997420164557016094379766190316364115993532832421761544252438811845490841478839496165820314650693493300939845917018861234746490283525114508645506389183,417942208512)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.15; j = G.17; k = G.20; l = G.22; m = G.25; n = G.27; o = G.28; p = G.29; q = G.30; r = G.31;
 

Group information

Description:$C_3^{12}.C_2^6.C_2^6.C_2^6.C_3$
Order: \(417942208512\)\(\medspace = 2^{18} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(13374150672384\)\(\medspace = 2^{23} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 18, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Statistics about orders of elements in this group have not been computed.

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid e^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([31, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 11339483464704, 9913266300157, 7823433553952, 26929620274574, 419874021279, 250, 38914227615747, 4885927281170, 3033187978720, 53425547691289, 293364900315, 5660393171166, 5255335354307, 438, 2058722670821, 9446668139460, 3209949789715, 2195203094090, 315864366880, 56273956913334, 22974595094341, 4425333807452, 3880887782731, 3490480943142, 876507997715, 57910278651535, 16183688511014, 4489276739397, 1068334705636, 2068261267779, 1261854284930, 354471099793, 720, 80176571228168, 34346370441639, 17061803278342, 5892015931589, 4312164026292, 381000920347, 989988066590, 155787743488, 57223118787159, 34245340777000, 1410329693511, 9498664764902, 1329141189573, 273185377284, 626077143475, 395524723466, 176504420637, 908, 5539654534666, 7299512039465, 11991094314568, 8765296120167, 4765520437702, 2868723258181, 1371260375780, 479954513067, 25964626858, 10234083262475, 3211096000554, 16458566965321, 3578294641256, 4432050545031, 2169807659302, 1319984105093, 222548571684, 26659102003, 60589280810, 48901585821, 1096, 82813138477068, 23579484451371, 11142597939274, 2182393536233, 6758067039496, 1637495056871, 1105478997990, 374665837541, 276371181164, 120393772647, 105748698676, 1190, 17507023478797, 16865352992812, 12234610379339, 7015519755882, 6161653962377, 1539981518407, 872404249590, 41925, 51190037638799, 20670664559805, 4089043913236, 2731438748267, 5358063446058, 4014279319849, 887241600411, 124279166422, 179871333773, 45014814504, 21112851055, 15505138016, 8591237652, 1378, 40387194101775, 18120604778542, 15554295889997, 13795587883116, 7680057016459, 408771551402, 41983598824, 51096444167, 26659008294, 35926010468, 2129018883, 33648942306343, 14943135355951, 14117795141454, 9723557366893, 6987757630028, 407768687019, 1869979278154, 625319283041, 540691527720, 262407272119, 3382290542, 42892871853, 15966626896, 1647854616, 1029953998, 1566, 6562030744241, 61359972424752, 33021647336527, 17434933807214, 2271637820301, 168941044396, 1530667031243, 362030194890, 27962761, 14660624456, 137049255399, 26741882518, 8476694453, 3033536203, 208276214, 1660, 244198166888466, 55606340045873, 25955165239376, 1355481815151, 3069790949518, 337697957549, 2089982947020, 809071359211, 4071434, 21106122633, 3517687415, 16830378534, 3628443068, 62365648201699, 11336327841330, 11157780499281, 6398333337712, 6403444439183, 527263396014, 1700762573005, 755686633196, 226046246667, 202220271658, 40113325769, 16754463720, 4205356231, 11455115462, 309846693, 2220952084, 466882835, 92781066, 123030277, 1848, 117938819432468, 45410661531699, 30376439783506, 21839226200177, 6303382557840, 5476761465007, 1143332197293, 343121039116, 319774283435, 57049598953, 14296710344, 2382785446, 435753876, 16171, 185988401878509, 66011468678196, 11093626137171, 19366554746994, 10167950352529, 5555750695088, 1870980249807, 1128442918126, 341316011789, 176809755180, 181253863627, 5046614951, 1269387990, 84901333, 229242572, 6232726, 16894463, 2036, 169311885571990, 80586220786741, 29256335839828, 15643940438131, 8469188223122, 2955770818737, 2530324334800, 388011451631, 398567776014, 203896735789, 13594594508, 357915048, 255345751, 479376086, 405400941, 74685935, 18126528, 2130, 299870763614231, 22800246214710, 20997312276565, 21113821200500, 10556910600339, 2039403184337, 1019701592304, 370262287, 2571721, 36324, 3157891669224, 44223694105655, 34336688422486, 17100448358517, 3343203878548, 32397926579, 2752280985810, 1140688598641, 837139277072, 195359817903, 4483641934, 67835837165, 33876403596, 5752087658, 98431689, 97129720, 1786151, 2772013, 6408375, 3288256, 2318, 146032326475801, 62565728902200, 46005481952855, 22957808320630, 7801023559829, 2215771324627, 1415949695090, 423579746577, 395518256944, 35199426030, 17665869709, 2934678699, 51552281, 1625448, 136022, 12748372, 6809795, 323118807215642, 55023897673785, 6877987209366, 859748401395, 11246709041, 78102604, 8678538, 2170119, 181469, 60972, 10814, 295593512804379, 11943171588154, 1492896448663, 186612056308, 3887751474, 26998733, 26998795, 750568, 125670, 188197, 32019, 85933928476, 7215666167867, 5411749625946, 26172896563, 391475406, 1036166348, 48934923, 44921849, 14262415, 583262, 81682, 206428496302109, 64163950863420, 51451646883931, 3688426782842, 14132956861593, 1651368591575, 1332957185526, 262423204117, 74409166388, 62600636530, 31250500241, 2037995023, 144678765, 426803596, 23883018, 10223240, 1507311, 168173, 213875682508830, 19864815808573, 62933311875420, 5058663653499, 13360592153242, 1223390948215, 697295941910, 175888278453, 25948660979, 12922851858, 4855895024, 360398590, 179484605, 14992219]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.3, G.5, G.7, G.8, G.10, G.12, G.15, G.17, G.20, G.22, G.25, G.27, G.28, G.29, G.30, G.31]); AssignNames(~G, ["a", "b", "c", "c2", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "h4", "i", "i2", "j", "j2", "j4", "k", "k2", "l", "l2", "l4", "m", "m2", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(273606078228323540520616696598414593771027345500183586840191723742684976645613651262568162324245054317963665270126261155973002925700573557211300116501998137475793386601184991126864175871873357717734726341162864060703684399466417278756660562635164996104417663996938510441609006780767494860002534134742848442186475202307179817560082459271268917174392812014356088655632286476325220660379877270361620419624214323451306147002825192662673175023838434678883085966249360670413681060868651506090029371071843010793648504690153538050070409189383632463396522121001881717319323047879967462782068744810628082248694108973414464690497091859090174025678674848179290368789338976745745719469391735583462733237532505760607542246634280490016093232055420882752381367086552327090430191546808686908116134328132026648835749738412663146241863786570877879691506940989637288872303872469026421973412039732211859250931012988088896428510787359024750084729293798689290892933259431116612468984025596747633617731451382835197634276802158892179761494234916811189674203404088238656999408939551727894895470238959827308749054036926434329858767288759105049583553753326665379106766990275388360094950229684844826792750287556202989456976220472366490402535672976345109088123201409644198062262525483127794376948855426733743597123563932825895412806859339549897924320255025608895137445422153072176406368772399201179529238723768093106711008734400583490230037181825144900854788249376207617298785135646320267383021925247689279870863632274730735986593335295276972492083218532584913587178406032214715678624702373844713121713754243768299080453199498674025857667732724754923313837497403401008343346278517568668235953632375128627592240565248182756245704684952034745044269678743483602555061706836248681201307708207428368012572773888028565600668197234679943104895868485597070815335576580118429386135841101585913146824492803368936150521481129364118809789355801784552420302802361178983529039991084644996790026343006501627505801943069767033724573236217013668823774744573342901503503194104825075276798530451323068314356193494324190592950694554316993919448930810525789621623143157077955077447397236590677081900922414499360330982958549826365412140390085257044467728283387732565646486492661164421728157174374494286238499617516584325414180822734388133722126412667014645517066459604249878167441866511105063500003856682945307506112270031748818789017570597771660260901490586030176711117069568999177921351819712778135340265412591356610896714972048081249890612610646560324067424907815461708096694454636954151747373659037441567777150526629918673408548429425411848190594538523268882784975501040612939408840219046937980989813320257004205997710656952325973468494608995609837877259970691737334915432148324327502348438556337076637108123386002168591090682723337418482476039976269122739071113027837078899942796738491838891195556650834059646346185775255029898808920975450267864656716773624296274067400387705334537620605285307858646113187936583865009413015226545411235340395473119161954468097243482862710316064923984056470084283503540322109549322832553936554668617760588466381439155891358983269207033039336453683503747245894769670620662722870518665247960313909929310717886730155905566105510402568089313334318489892825612655815258804172282847421505943877229678862305223452756207847803769981690006964122211170035199032210077190091403308820455070627975632548187802779749099592273946307936372323285483698031197011305233664648071805451811857782518587858469672724501385046613350620077298425926013686543992963101358287328715748114258762380489002439116299606475671180474692271106421738174736460925909215552713920737760012470257667130442468592955399330167379528526775147753290842492824086188339274215846437281587949696852320186467050826544920686218763395327930727091743182534947226773990770752040492627157257756083991598386853554470205004785704849270757545914084582322996408485353192643007957514799565505304141088372851624536898343875109023816368537617835591385270274547006740214893292973170168187997420164557016094379766190316364115993532832421761544252438811845490841478839496165820314650693493300939845917018861234746490283525114508645506389183,417942208512); a := G.1; b := G.2; c := G.3; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.15; j := G.17; k := G.20; l := G.22; m := G.25; n := G.27; o := G.28; p := G.29; q := G.30; r := G.31;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(273606078228323540520616696598414593771027345500183586840191723742684976645613651262568162324245054317963665270126261155973002925700573557211300116501998137475793386601184991126864175871873357717734726341162864060703684399466417278756660562635164996104417663996938510441609006780767494860002534134742848442186475202307179817560082459271268917174392812014356088655632286476325220660379877270361620419624214323451306147002825192662673175023838434678883085966249360670413681060868651506090029371071843010793648504690153538050070409189383632463396522121001881717319323047879967462782068744810628082248694108973414464690497091859090174025678674848179290368789338976745745719469391735583462733237532505760607542246634280490016093232055420882752381367086552327090430191546808686908116134328132026648835749738412663146241863786570877879691506940989637288872303872469026421973412039732211859250931012988088896428510787359024750084729293798689290892933259431116612468984025596747633617731451382835197634276802158892179761494234916811189674203404088238656999408939551727894895470238959827308749054036926434329858767288759105049583553753326665379106766990275388360094950229684844826792750287556202989456976220472366490402535672976345109088123201409644198062262525483127794376948855426733743597123563932825895412806859339549897924320255025608895137445422153072176406368772399201179529238723768093106711008734400583490230037181825144900854788249376207617298785135646320267383021925247689279870863632274730735986593335295276972492083218532584913587178406032214715678624702373844713121713754243768299080453199498674025857667732724754923313837497403401008343346278517568668235953632375128627592240565248182756245704684952034745044269678743483602555061706836248681201307708207428368012572773888028565600668197234679943104895868485597070815335576580118429386135841101585913146824492803368936150521481129364118809789355801784552420302802361178983529039991084644996790026343006501627505801943069767033724573236217013668823774744573342901503503194104825075276798530451323068314356193494324190592950694554316993919448930810525789621623143157077955077447397236590677081900922414499360330982958549826365412140390085257044467728283387732565646486492661164421728157174374494286238499617516584325414180822734388133722126412667014645517066459604249878167441866511105063500003856682945307506112270031748818789017570597771660260901490586030176711117069568999177921351819712778135340265412591356610896714972048081249890612610646560324067424907815461708096694454636954151747373659037441567777150526629918673408548429425411848190594538523268882784975501040612939408840219046937980989813320257004205997710656952325973468494608995609837877259970691737334915432148324327502348438556337076637108123386002168591090682723337418482476039976269122739071113027837078899942796738491838891195556650834059646346185775255029898808920975450267864656716773624296274067400387705334537620605285307858646113187936583865009413015226545411235340395473119161954468097243482862710316064923984056470084283503540322109549322832553936554668617760588466381439155891358983269207033039336453683503747245894769670620662722870518665247960313909929310717886730155905566105510402568089313334318489892825612655815258804172282847421505943877229678862305223452756207847803769981690006964122211170035199032210077190091403308820455070627975632548187802779749099592273946307936372323285483698031197011305233664648071805451811857782518587858469672724501385046613350620077298425926013686543992963101358287328715748114258762380489002439116299606475671180474692271106421738174736460925909215552713920737760012470257667130442468592955399330167379528526775147753290842492824086188339274215846437281587949696852320186467050826544920686218763395327930727091743182534947226773990770752040492627157257756083991598386853554470205004785704849270757545914084582322996408485353192643007957514799565505304141088372851624536898343875109023816368537617835591385270274547006740214893292973170168187997420164557016094379766190316364115993532832421761544252438811845490841478839496165820314650693493300939845917018861234746490283525114508645506389183,417942208512)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.15; j = G.17; k = G.20; l = G.22; m = G.25; n = G.27; o = G.28; p = G.29; q = G.30; r = G.31;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(273606078228323540520616696598414593771027345500183586840191723742684976645613651262568162324245054317963665270126261155973002925700573557211300116501998137475793386601184991126864175871873357717734726341162864060703684399466417278756660562635164996104417663996938510441609006780767494860002534134742848442186475202307179817560082459271268917174392812014356088655632286476325220660379877270361620419624214323451306147002825192662673175023838434678883085966249360670413681060868651506090029371071843010793648504690153538050070409189383632463396522121001881717319323047879967462782068744810628082248694108973414464690497091859090174025678674848179290368789338976745745719469391735583462733237532505760607542246634280490016093232055420882752381367086552327090430191546808686908116134328132026648835749738412663146241863786570877879691506940989637288872303872469026421973412039732211859250931012988088896428510787359024750084729293798689290892933259431116612468984025596747633617731451382835197634276802158892179761494234916811189674203404088238656999408939551727894895470238959827308749054036926434329858767288759105049583553753326665379106766990275388360094950229684844826792750287556202989456976220472366490402535672976345109088123201409644198062262525483127794376948855426733743597123563932825895412806859339549897924320255025608895137445422153072176406368772399201179529238723768093106711008734400583490230037181825144900854788249376207617298785135646320267383021925247689279870863632274730735986593335295276972492083218532584913587178406032214715678624702373844713121713754243768299080453199498674025857667732724754923313837497403401008343346278517568668235953632375128627592240565248182756245704684952034745044269678743483602555061706836248681201307708207428368012572773888028565600668197234679943104895868485597070815335576580118429386135841101585913146824492803368936150521481129364118809789355801784552420302802361178983529039991084644996790026343006501627505801943069767033724573236217013668823774744573342901503503194104825075276798530451323068314356193494324190592950694554316993919448930810525789621623143157077955077447397236590677081900922414499360330982958549826365412140390085257044467728283387732565646486492661164421728157174374494286238499617516584325414180822734388133722126412667014645517066459604249878167441866511105063500003856682945307506112270031748818789017570597771660260901490586030176711117069568999177921351819712778135340265412591356610896714972048081249890612610646560324067424907815461708096694454636954151747373659037441567777150526629918673408548429425411848190594538523268882784975501040612939408840219046937980989813320257004205997710656952325973468494608995609837877259970691737334915432148324327502348438556337076637108123386002168591090682723337418482476039976269122739071113027837078899942796738491838891195556650834059646346185775255029898808920975450267864656716773624296274067400387705334537620605285307858646113187936583865009413015226545411235340395473119161954468097243482862710316064923984056470084283503540322109549322832553936554668617760588466381439155891358983269207033039336453683503747245894769670620662722870518665247960313909929310717886730155905566105510402568089313334318489892825612655815258804172282847421505943877229678862305223452756207847803769981690006964122211170035199032210077190091403308820455070627975632548187802779749099592273946307936372323285483698031197011305233664648071805451811857782518587858469672724501385046613350620077298425926013686543992963101358287328715748114258762380489002439116299606475671180474692271106421738174736460925909215552713920737760012470257667130442468592955399330167379528526775147753290842492824086188339274215846437281587949696852320186467050826544920686218763395327930727091743182534947226773990770752040492627157257756083991598386853554470205004785704849270757545914084582322996408485353192643007957514799565505304141088372851624536898343875109023816368537617835591385270274547006740214893292973170168187997420164557016094379766190316364115993532832421761544252438811845490841478839496165820314650693493300939845917018861234746490283525114508645506389183,417942208512)'); a = G.1; b = G.2; c = G.3; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.15; j = G.17; k = G.20; l = G.22; m = G.25; n = G.27; o = G.28; p = G.29; q = G.30; r = G.31;
 
Permutation group:Degree $36$ $\langle(1,6,12,34,9,13,2,4,11,36,7,14)(3,5,10,35,8,15)(16,23,28,19,26,32,17,22,30,21,25,33) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,6,12,34,9,13,2,4,11,36,7,14)(3,5,10,35,8,15)(16,23,28,19,26,32,17,22,30,21,25,33)(18,24,29,20,27,31), (1,7,33)(2,8,32)(3,9,31)(4,28,36,5,30,35)(6,29,34)(10,20,22,12,21,23,11,19,24)(13,17,25,14,16,26)(15,18,27), (1,14,24,2,13,23,3,15,22)(4,20,31,5,21,32,6,19,33)(7,18,28,8,17,29,9,16,30)(10,25,35,11,26,36,12,27,34), (1,28,27,35,33,22)(2,30,26,36,31,24)(3,29,25,34,32,23)(4,17,10,8,19,13,5,18,12,7,20,15,6,16,11,9,21,14) >;
 
Copy content gap:G := Group( (1,6,12,34,9,13,2,4,11,36,7,14)(3,5,10,35,8,15)(16,23,28,19,26,32,17,22,30,21,25,33)(18,24,29,20,27,31), (1,7,33)(2,8,32)(3,9,31)(4,28,36,5,30,35)(6,29,34)(10,20,22,12,21,23,11,19,24)(13,17,25,14,16,26)(15,18,27), (1,14,24,2,13,23,3,15,22)(4,20,31,5,21,32,6,19,33)(7,18,28,8,17,29,9,16,30)(10,25,35,11,26,36,12,27,34), (1,28,27,35,33,22)(2,30,26,36,31,24)(3,29,25,34,32,23)(4,17,10,8,19,13,5,18,12,7,20,15,6,16,11,9,21,14) );
 
Copy content sage:G = PermutationGroup(['(1,6,12,34,9,13,2,4,11,36,7,14)(3,5,10,35,8,15)(16,23,28,19,26,32,17,22,30,21,25,33)(18,24,29,20,27,31)', '(1,7,33)(2,8,32)(3,9,31)(4,28,36,5,30,35)(6,29,34)(10,20,22,12,21,23,11,19,24)(13,17,25,14,16,26)(15,18,27)', '(1,14,24,2,13,23,3,15,22)(4,20,31,5,21,32,6,19,33)(7,18,28,8,17,29,9,16,30)(10,25,35,11,26,36,12,27,34)', '(1,28,27,35,33,22)(2,30,26,36,31,24)(3,29,25,34,32,23)(4,17,10,8,19,13,5,18,12,7,20,15,6,16,11,9,21,14)'])
 
Transitive group: 36T118366 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6.C_2^6.C_2^4)$ . $A_4$ (21) $(C_3^{12}.C_2^6.C_2^6.C_2^6)$ . $C_3$ $(C_3^{12}.C_2^6.C_2^6)$ . $(C_4^2:A_4)$ (20) $(C_3^{12}.C_2^6.C_2^6)$ . $(C_2^4:A_4)$ all 13

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9} \times C_{4}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 133 normal subgroups (29 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2^6.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

The character tables for this group have not been computed.