Properties

Label 1536.408494250
Order \( 2^{9} \cdot 3 \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{8} \)
$\card{Z(G)}$ \( 2^{6} \)
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{16} \cdot 3^{2} \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_3 \rtimes (C_8 . C_2^6)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism group:Group of order 14155776
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6 8 12 16 24 48
Elements 1 127 2 128 62 256 64 512 128 256 1536
Conjugacy classes   1 39 1 40 19 80 20 160 40 80 480
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 4
Irr. complex chars.   256 192 32 480

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{2}=c^{2}=d^{2}=e^{2}=f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(C_{12}.C_{96})$

Homology

Abelianization: $C_{2}^{5} \times C_{8} $

Subgroups

Center: $Z \simeq$ $C_2^2\times C_{16}$ $G/Z \simeq$ $C_2\times D_6$
Commutator: $G' \simeq$ $C_6$ $G/G' \simeq$ $C_2^5\times C_8$
Frattini: $\Phi \simeq$ $C_8$ $G/\Phi \simeq$ $D_6\times C_2^4$
Fitting: $\operatorname{Fit} \simeq$ $C_3 \times (C_{16}.C_2^4)$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $C_3 \rtimes (C_8 . C_2^6)$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^2\times C_6$ $G/S \simeq$ $C_2^3\times C_8$
2-Sylow subgroup: $P_{2} \simeq$ $C_8 . C_2^6$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
Maximal subgroups: $M_{2,1} \simeq$ $C_3 \rtimes (C_2^4\times C_{16})$ $G/M_{2,1} \simeq$ $C_2$ 3 normal subgroups
$M_{2,2} \simeq$ $C_3 \rtimes (C_2^3\times \OD_{32})$ $G/M_{2,2} \simeq$ $C_2$ 3 normal subgroups
$M_{2,3} \simeq$ $C_3 \rtimes (C_{16}.C_2^4)$ $G/M_{2,3} \simeq$ $C_2$ 48 normal subgroups
$M_{2,4} \simeq$ $C_3 \rtimes (C_{16}.C_2^4)$ $G/M_{2,4} \simeq$ $C_2$ 3 normal subgroups
$M_{2,5} \simeq$ $C_3 \rtimes (C_{16}.C_2^4)$ $G/M_{2,5} \simeq$ $C_2$
$M_{2,6} \simeq$ $C_3 \rtimes (C_{16}.C_2^4)$ $G/M_{2,6} \simeq$ $C_2$ 3 normal subgroups
$M_{2,7} \simeq$ $C_3 \rtimes (\OD_{16}:C_2^4)$ $G/M_{2,7} \simeq$ $C_2$
$M_{2,8} \simeq$ $C_3 \times (C_{16}.C_2^4)$ $G/M_{2,8} \simeq$ $C_2$
$M_{3} \simeq$ $C_8 . C_2^6$ 3 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_3 \rtimes (C_{16}.C_2^4)$ 6 normal subgroups
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_3 \rtimes (C_2^5\times C_8)$
$m_{3} \simeq$ $C_3$ $G/m_{3} \simeq$ $C_8 . C_2^6$