Properties

Label 768.1083326
Order \( 2^{8} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{7} \)
$\card{Z(G)}$ \( 2^{5} \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{15} \cdot 3^{2} \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_3 \rtimes (\OD_{16}:C_2^4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism group:Group of order 7077888
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6 8 12 24
Elements 1 127 2 128 62 256 64 128 768
Conjugacy classes   1 39 1 40 19 80 20 40 240
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 4
Irr. complex chars.   128 96 16 240

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid b^{2}=c^{2}=d^{2}=e^{2}=f^{2}=h^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(C_{48}.D_4)$ $\Aut(S_3\times \OD_{64})$ $\Aut(C_6:C_{96})$ $\Aut(C_{12}.C_{48})$

Homology

Abelianization: $C_{2}^{5} \times C_{4} $

Subgroups

Center: $Z \simeq$ $C_2^2\times C_8$ $G/Z \simeq$ $C_2\times D_6$
Commutator: $G' \simeq$ $C_6$ $G/G' \simeq$ $C_2^5\times C_4$
Frattini: $\Phi \simeq$ $C_4$ $G/\Phi \simeq$ $D_6\times C_2^4$
Fitting: $\operatorname{Fit} \simeq$ $C_{12}.C_2^5$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $C_3 \rtimes (\OD_{16}:C_2^4)$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^2\times C_6$ $G/S \simeq$ $C_2^3\times C_4$
2-Sylow subgroup: $P_{2} \simeq$ $\OD_{16}:C_2^4$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
Maximal subgroups: $M_{2,1} \simeq$ $C_{24}:C_2^4$ $G/M_{2,1} \simeq$ $C_2$ 3 normal subgroups
$M_{2,2} \simeq$ $C_{12}.C_2^5$ $G/M_{2,2} \simeq$ $C_2$ 3 normal subgroups
$M_{2,3} \simeq$ $C_{24}:C_2^4$ $G/M_{2,3} \simeq$ $C_2$ 3 normal subgroups
$M_{2,4} \simeq$ $C_{12}.C_2^5$ $G/M_{2,4} \simeq$ $C_2$ 3 normal subgroups
$M_{2,5} \simeq$ $C_{12}.C_2^5$ $G/M_{2,5} \simeq$ $C_2$ 48 normal subgroups
$M_{2,6} \simeq$ $C_{12}.C_2^5$ $G/M_{2,6} \simeq$ $C_2$
$M_{2,7} \simeq$ $C_{12}.C_2^5$ $G/M_{2,7} \simeq$ $C_2$
$M_{2,8} \simeq$ $D_{12}:C_2^4$ $G/M_{2,8} \simeq$ $C_2$
$M_{3} \simeq$ $\OD_{16}:C_2^4$ 3 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_{12}.C_2^5$ 6 normal subgroups
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_{12}:C_2^5$
$m_{3} \simeq$ $C_3$ $G/m_{3} \simeq$ $\OD_{16}:C_2^4$