Group information
Description: | $\Sp(6,2)$ | |
Order: | \(1451520\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5 \cdot 7 \) |
|
Exponent: | \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
|
Automorphism group: | $\Sp(6,2)$, of order \(1451520\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5 \cdot 7 \) |
|
Composition factors: | $\Sp(6,2)$ |
|
Derived length: | $0$ |
|
This group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and rational.
Group statistics
Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | 1 | 5103 | 16352 | 75600 | 48384 | 272160 | 207360 | 181440 | 161280 | 145152 | 241920 | 96768 | 1451520 |
Conjugacy classes | 1 | 4 | 3 | 5 | 1 | 7 | 1 | 2 | 1 | 1 | 3 | 1 | 30 |
Divisions | 1 | 4 | 3 | 5 | 1 | 7 | 1 | 2 | 1 | 1 | 3 | 1 | 30 |
Autjugacy classes | 1 | 4 | 3 | 5 | 1 | 7 | 1 | 2 | 1 | 1 | 3 | 1 | 30 |
Dimension | 1 | 7 | 15 | 21 | 27 | 35 | 56 | 70 | 84 | 105 | 120 | 168 | 189 | 210 | 216 | 280 | 315 | 336 | 378 | 405 | 420 | 512 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irr. complex chars. | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 3 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 30 |
Irr. rational chars. | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 3 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 30 |
Minimal presentations
Permutation degree: | $28$ |
Transitive degree: | $28$ |
Rank: | $2$ |
Inequivalent generating pairs: | $1318218$ |
Minimal degrees of faithful linear representations
Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
---|---|---|---|
Irreducible | 7 | 7 | 7 |
Arbitrary | not computed | not computed | not computed |
Constructions
Groups of Lie type: | $\Sp(6,2)$, $\SO(7,2)$, $\PSp(6,2)$, $\GO(7,2)$, $\Omega(7,2)$, $\PGO(7,2)$, $\Spin(7,2)$, $\CSp(6,2)$, $\PSigmaSp(6,2)$ | |||||||
Permutation group: | Degree $28$
$\langle(1,6,19)(2,18,25,3,12,22)(4,21,7,5,20,13)(8,17,26,15,10,24)(9,11,23,14,16,27), (1,2)(3,15)(4,16)(5,17)(6,18)(9,28)(10,27)(11,24)(12,21)(13,14)\rangle$
| |||||||
| ||||||||
Transitive group: | 28T1256 | 36T40610 | more information | |||||
Direct product: | not isomorphic to a non-trivial direct product | |||||||
Semidirect product: | not isomorphic to a non-trivial semidirect product | |||||||
Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product |
Elements of the group are displayed as matrices in $\Sp(6,2)$.
Homology
Abelianization: | $C_1 $ |
|
Schur multiplier: | $C_{2}$ |
|
Commutator length: | $1$ |
|
Subgroups
There are 11094174 subgroups in 1369 conjugacy classes, 2 normal, and all normal subgroups are characteristic.
Characteristic subgroups are shown in this color.
Special subgroups
Center: | $Z \simeq$ $C_1$ | $G/Z \simeq$ $\Sp(6,2)$ |
|
Commutator: | $G' \simeq$ $\Sp(6,2)$ | $G/G' \simeq$ $C_1$ |
|
Frattini: | $\Phi \simeq$ $C_1$ | $G/\Phi \simeq$ $\Sp(6,2)$ |
|
Fitting: | $\operatorname{Fit} \simeq$ $C_1$ | $G/\operatorname{Fit} \simeq$ $\Sp(6,2)$ |
|
Radical: | $R \simeq$ $C_1$ | $G/R \simeq$ $\Sp(6,2)$ |
|
Socle: | $\operatorname{soc} \simeq$ $\Sp(6,2)$ | $G/\operatorname{soc} \simeq$ $C_1$ |
|
2-Sylow subgroup: | $P_{ 2 } \simeq$ $C_2^6:D_4$ | ||
3-Sylow subgroup: | $P_{ 3 } \simeq$ $C_3\wr C_3$ | ||
5-Sylow subgroup: | $P_{ 5 } \simeq$ $C_5$ | ||
7-Sylow subgroup: | $P_{ 7 } \simeq$ $C_7$ |
Subgroup diagram and profile
Series
Derived series | $\Sp(6,2)$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chief series | $\Sp(6,2)$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lower central series | $\Sp(6,2)$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Upper central series | $C_1$ |
|
Supergroups
This group is a maximal subgroup of 5 larger groups in the database.
This group is a maximal quotient of 1 larger groups in the database.
Character theory
Complex character table
Every character has rational values, so the complex character table is the same as the rational character table below.
Rational character table
See the $30 \times 30$ rational character table. Alternatively, you may search for characters of this group with desired properties.