Properties

Label 102660.a
Order \( 2^{2} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \)
Exponent \( 2 \cdot 3 \cdot 5 \cdot 29 \cdot 59 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{3} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $60$
Trans deg. $60$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := PSL(2, 59);
 
Copy content gap:G := PSL(2, 59);
 
Copy content sage:G = PSL(2, 59)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\PSL(2,59)$
Order: \(102660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(51330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 29 \cdot 59 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\PGL(2,59)$, of order \(205320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\PSL(2,59)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 5 6 10 15 29 30 59
Elements 1 1711 3422 6844 3422 6844 13688 49560 13688 3480 102660
Conjugacy classes   1 1 1 2 1 2 4 14 4 2 32
Divisions 1 1 1 1 1 1 1 1 1 1 10
Autjugacy classes 1 1 1 2 1 2 4 14 4 1 31

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 29 58 59 60 116 232 840
Irr. complex chars.   1 2 14 1 14 0 0 0 32
Irr. rational chars. 1 0 3 1 0 2 2 1 10

Minimal presentations

Permutation degree:$60$
Transitive degree:$60$
Rank: $2$
Inequivalent generating pairs: $50390$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 29 58 58
Arbitrary 29 58 58

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\PSL(2,59)$, $\PSU(2,59)$, $\Omega(3,59)$, $\POmega(3,59)$, $\PSigmaL(2,59)$
Permutation group:Degree $60$ $\langle(1,60,2)(3,31,59)(4,20,57)(5,42,58)(6,46,28)(7,26,17)(8,52,39)(9,30,43) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 60 | (1,60,2)(3,31,59)(4,20,57)(5,42,58)(6,46,28)(7,26,17)(8,52,39)(9,30,43)(10,54,23)(11,25,49)(12,44,27)(13,37,51)(14,29,22)(15,38,41)(16,56,34)(18,50,35)(19,32,53)(21,24,47)(33,48,40)(36,55,45), (3,54,48,16,5,10,46,23,26,51,30,28,27,38,59,21,50,56,19,49,45,52,34,8,20,6,22,39,31)(4,25,36,35,33,12,37,40,17,53,58,47,15,9,60,32,24,41,57,43,55,29,11,18,14,44,7,13,42) >;
 
Copy content gap:G := Group( (1,60,2)(3,31,59)(4,20,57)(5,42,58)(6,46,28)(7,26,17)(8,52,39)(9,30,43)(10,54,23)(11,25,49)(12,44,27)(13,37,51)(14,29,22)(15,38,41)(16,56,34)(18,50,35)(19,32,53)(21,24,47)(33,48,40)(36,55,45), (3,54,48,16,5,10,46,23,26,51,30,28,27,38,59,21,50,56,19,49,45,52,34,8,20,6,22,39,31)(4,25,36,35,33,12,37,40,17,53,58,47,15,9,60,32,24,41,57,43,55,29,11,18,14,44,7,13,42) );
 
Copy content sage:G = PermutationGroup(['(1,60,2)(3,31,59)(4,20,57)(5,42,58)(6,46,28)(7,26,17)(8,52,39)(9,30,43)(10,54,23)(11,25,49)(12,44,27)(13,37,51)(14,29,22)(15,38,41)(16,56,34)(18,50,35)(19,32,53)(21,24,47)(33,48,40)(36,55,45)', '(3,54,48,16,5,10,46,23,26,51,30,28,27,38,59,21,50,56,19,49,45,52,34,8,20,6,22,39,31)(4,25,36,35,33,12,37,40,17,53,58,47,15,9,60,32,24,41,57,43,55,29,11,18,14,44,7,13,42)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,59)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 82368 subgroups in 26 conjugacy classes, 2 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $\PSL(2,59)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\PSL(2,59)$ $G/G' \simeq$ $C_1$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $\PSL(2,59)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_1$ $G/\operatorname{Fit} \simeq$ $\PSL(2,59)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_1$ $G/R \simeq$ $\PSL(2,59)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $\PSL(2,59)$ $G/\operatorname{soc} \simeq$ $C_1$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
29-Sylow subgroup: $P_{ 29 } \simeq$ $C_{29}$
59-Sylow subgroup: $P_{ 59 } \simeq$ $C_{59}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $\PSL(2,59)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $\PSL(2,59)$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $\PSL(2,59)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $32 \times 32$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 2A 3A 5A 6A 10A 15A 29A 30A 59A
Size 1 1711 3422 6844 3422 6844 13688 49560 13688 3480
2 P 1A 1A 3A 5A 3A 5A 15A 29A 15A 59A
3 P 1A 2A 1A 5A 2A 10A 5A 29A 10A 59A
5 P 1A 2A 3A 1A 6A 2A 3A 29A 6A 59A
29 P 1A 2A 3A 5A 6A 10A 15A 29A 30A 59A
59 P 1A 2A 3A 5A 6A 10A 15A 1A 30A 59A
102660.a.1a 1 1 1 1 1 1 1 1 1 1
102660.a.29a 58 2 2 2 2 2 2 0 2 1
102660.a.58a 58 2 1 2 1 2 1 0 1 1
102660.a.58b 58 2 1 2 1 2 1 0 1 1
102660.a.58c 116 4 4 1 4 1 1 0 1 2
102660.a.58d 116 4 4 1 4 1 1 0 1 2
102660.a.58e 232 8 4 2 4 2 1 0 1 4
102660.a.58f 232 8 4 2 4 2 1 0 1 4
102660.a.59a 59 1 1 1 1 1 1 1 1 0
102660.a.60a 840 0 0 0 0 0 0 1 0 14