Properties

Label 101606400.g
Order \( 2^{10} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $15$
Trans deg. $56$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (3,6)(5,7)(11,15,13,14,12), (1,2), (3,6,4,7,5)(9,10)(11,13,15,14), (3,6,5,7,4)(12,14,13), (5,7,6)(12,15,14), (2,7,4,3,5)(10,13,11,15,14), (12,13,14), (8,14,10)(11,15)(12,13), (2,3,7)(8,12,10,13)(9,14,15,11), (3,6)(5,7)(10,11,14,12)(13,15), (9,13,12)(10,11,14), (1,5,3,2,6,4,7)(8,11,10,9,15,14)(12,13), (4,5,6)(12,15,14), (13,14,15) >;
 
Copy content gap:G := Group( (3,6)(5,7)(11,15,13,14,12), (1,2), (3,6,4,7,5)(9,10)(11,13,15,14), (3,6,5,7,4)(12,14,13), (5,7,6)(12,15,14), (2,7,4,3,5)(10,13,11,15,14), (12,13,14), (8,14,10)(11,15)(12,13), (2,3,7)(8,12,10,13)(9,14,15,11), (3,6)(5,7)(10,11,14,12)(13,15), (9,13,12)(10,11,14), (1,5,3,2,6,4,7)(8,11,10,9,15,14)(12,13), (4,5,6)(12,15,14), (13,14,15) );
 
Copy content sage:G = PermutationGroup(['(3,6)(5,7)(11,15,13,14,12)', '(1,2)', '(3,6,4,7,5)(9,10)(11,13,15,14)', '(3,6,5,7,4)(12,14,13)', '(5,7,6)(12,15,14)', '(2,7,4,3,5)(10,13,11,15,14)', '(12,13,14)', '(8,14,10)(11,15)(12,13)', '(2,3,7)(8,12,10,13)(9,14,15,11)', '(3,6)(5,7)(10,11,14,12)(13,15)', '(9,13,12)(10,11,14)', '(1,5,3,2,6,4,7)(8,11,10,9,15,14)(12,13)', '(4,5,6)(12,15,14)', '(13,14,15)'])
 

Group information

Description:$S_7\times A_8$
Order: \(101606400\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$S_7\times S_8$, of order \(203212800\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $A_7$, $A_8$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 10 12 14 15 20 21 28 30 35 42 60 70 84 105
Elements 1 73311 432782 4317600 679224 13012482 4153680 1305864 16502640 1557360 3389568 4939200 2903040 7560000 13603968 3870720 12096000 3951360 2903040 2419200 1935360 101606400
Conjugacy classes   1 11 8 18 3 43 5 9 27 8 12 6 6 6 23 3 8 7 2 2 2 210
Divisions 1 11 8 18 3 43 3 9 27 5 8 6 4 4 16 2 5 4 1 1 1 180
Autjugacy classes 1 11 8 18 3 43 3 9 27 5 8 6 4 4 16 2 5 4 1 1 1 180

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 6 7 14 15 20 21 28 35 42 45 56 64 70 84 90 98 105 120 126 140 147 168 196 210 245 252 270 280 294 300 315 336 384 392 400 420 441 490 525 540 560 588 630 675 700 735 784 840 882 896 900 945 960 980 1050 1120 1176 1225 1260 1280 1344 1350 1400 1470 1575 1800 1890 1960 2240 2450 3150
Irr. complex chars.   2 2 2 6 2 3 8 2 4 2 4 2 2 2 2 0 4 2 2 6 1 2 2 4 4 2 0 4 5 14 2 6 2 2 4 1 9 6 6 2 0 1 2 8 4 3 8 4 2 0 4 2 4 2 6 2 1 2 2 0 1 2 0 1 2 4 0 0 2 2 2 0 210
Irr. rational chars. 2 2 2 6 2 3 4 2 4 4 0 2 2 2 2 2 4 2 2 2 1 2 2 4 4 2 2 0 5 6 2 2 2 2 4 1 7 2 6 2 2 1 6 2 0 3 4 4 3 2 4 0 0 2 6 2 1 2 2 4 1 2 2 1 4 0 1 2 2 2 2 2 180

Minimal presentations

Permutation degree:$15$
Transitive degree:$56$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 42 42 42
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $15$ $\langle(3,6)(5,7)(11,15,13,14,12), (1,2), (3,6,4,7,5)(9,10)(11,13,15,14), (3,6,5,7,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (3,6)(5,7)(11,15,13,14,12), (1,2), (3,6,4,7,5)(9,10)(11,13,15,14), (3,6,5,7,4)(12,14,13), (5,7,6)(12,15,14), (2,7,4,3,5)(10,13,11,15,14), (12,13,14), (8,14,10)(11,15)(12,13), (2,3,7)(8,12,10,13)(9,14,15,11), (3,6)(5,7)(10,11,14,12)(13,15), (9,13,12)(10,11,14), (1,5,3,2,6,4,7)(8,11,10,9,15,14)(12,13), (4,5,6)(12,15,14), (13,14,15) >;
 
Copy content gap:G := Group( (3,6)(5,7)(11,15,13,14,12), (1,2), (3,6,4,7,5)(9,10)(11,13,15,14), (3,6,5,7,4)(12,14,13), (5,7,6)(12,15,14), (2,7,4,3,5)(10,13,11,15,14), (12,13,14), (8,14,10)(11,15)(12,13), (2,3,7)(8,12,10,13)(9,14,15,11), (3,6)(5,7)(10,11,14,12)(13,15), (9,13,12)(10,11,14), (1,5,3,2,6,4,7)(8,11,10,9,15,14)(12,13), (4,5,6)(12,15,14), (13,14,15) );
 
Copy content sage:G = PermutationGroup(['(3,6)(5,7)(11,15,13,14,12)', '(1,2)', '(3,6,4,7,5)(9,10)(11,13,15,14)', '(3,6,5,7,4)(12,14,13)', '(5,7,6)(12,15,14)', '(2,7,4,3,5)(10,13,11,15,14)', '(12,13,14)', '(8,14,10)(11,15)(12,13)', '(2,3,7)(8,12,10,13)(9,14,15,11)', '(3,6)(5,7)(10,11,14,12)(13,15)', '(9,13,12)(10,11,14)', '(1,5,3,2,6,4,7)(8,11,10,9,15,14)(12,13)', '(4,5,6)(12,15,14)', '(13,14,15)'])
 
Direct product: $S_7$ $\, \times\, $ $A_8$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $A_8$ . $S_7$ $S_7$ . $A_8$ $(A_7\times A_8)$ . $C_2$ $A_7$ . $(C_2\times A_8)$ more information
Aut. group: $\Aut(C_2^4\times A_7)$

Elements of the group are displayed as permutations of degree 15.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 6 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $A_7\times A_8$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $210 \times 210$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $180 \times 180$ rational character table (warning: may be slow to load).