/* Group 101606400.g downloaded from the LMFDB on 14 October 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 15 | (3,6)(5,7)(11,15,13,14,12), (1,2), (3,6,4,7,5)(9,10)(11,13,15,14), (3,6,5,7,4)(12,14,13), (5,7,6)(12,15,14), (2,7,4,3,5)(10,13,11,15,14), (12,13,14), (8,14,10)(11,15)(12,13), (2,3,7)(8,12,10,13)(9,14,15,11), (3,6)(5,7)(10,11,14,12)(13,15), (9,13,12)(10,11,14), (1,5,3,2,6,4,7)(8,11,10,9,15,14)(12,13), (4,5,6)(12,15,14), (13,14,15) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_101606400_g := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 21, G!(6,7)>,< 2, 105, G!(3,6)(5,7)>,< 2, 105, G!(1,4)(2,7)(3,5)>,< 2, 105, G!(8,11)(9,13)(10,12)(14,15)>,< 2, 210, G!(10,12)(14,15)>,< 2, 2205, G!(1,7)(8,9)(10,11)(12,13)(14,15)>,< 2, 4410, G!(3,4)(9,11)(12,14)>,< 2, 11025, G!(1,4)(2,5)(3,7)(8,13)(9,12)(10,11)(14,15)>,< 2, 11025, G!(1,6)(3,4)(8,9)(10,12)(11,15)(13,14)>,< 2, 22050, G!(1,7)(2,6)(3,4)(8,14)(12,13)>,< 2, 22050, G!(1,6)(2,7)(8,11)(14,15)>,< 3, 70, G!(4,6,5)>,< 3, 112, G!(9,10,14)>,< 3, 280, G!(1,2,3)(4,7,5)>,< 3, 1120, G!(9,12,15)(10,13,11)>,< 3, 7840, G!(1,4,2)(9,11,13)>,< 3, 31360, G!(1,4,5)(2,3,7)(10,15,13)>,< 3, 78400, G!(1,6,7)(8,15,12)(9,11,13)>,< 3, 313600, G!(1,7,5)(2,4,3)(8,10,15)(11,14,13)>,< 4, 210, G!(3,7,5,6)>,< 4, 630, G!(1,4,6,7)(2,5)>,< 4, 1260, G!(8,13,12,11)(9,14,10,15)>,< 4, 2520, G!(8,11)(10,14,12,15)>,< 4, 22050, G!(3,7,6,5)(8,9)(10,11)(12,13)(14,15)>,< 4, 26460, G!(3,6)(8,13,9,14)(10,12,15,11)>,< 4, 44100, G!(2,3,6,7)(9,15)(10,14)>,< 4, 52920, G!(3,6)(8,14,15,9)(10,11)>,< 4, 66150, G!(1,3)(2,6,4,5)(8,14)(9,11)(10,12)(13,15)>,< 4, 132300, G!(1,4)(2,6)(5,7)(8,15,11,14)(9,12,13,10)>,< 4, 132300, G!(1,5)(3,4,7,6)(10,12)(13,15)>,< 4, 132300, G!(1,2)(5,7)(8,10,11,13)(9,14,12,15)>,< 4, 264600, G!(1,4)(2,7)(3,5)(8,10)(9,12,14,15)>,< 4, 264600, G!(1,3)(5,6)(8,15,10,11)(9,12)>,< 4, 264600, G!(1,4,6,3)(8,13,9,14)(10,11,12,15)>,< 4, 529200, G!(1,7,3,2)(8,10)(9,13,15,11)>,< 4, 793800, G!(1,7)(2,4,3,5)(8,14,13,10)(9,12,15,11)>,< 4, 1587600, G!(1,2)(3,6,5,7)(8,11)(12,15,14,13)>,< 5, 504, G!(1,3,6,2,7)>,< 5, 1344, G!(8,11,12,13,15)>,< 5, 677376, G!(1,6,2,5,7)(10,11,15,13,14)>,< 6, 210, G!(1,4,2)(3,6)(5,7)>,< 6, 420, G!(1,2)(3,5,6)>,< 6, 840, G!(1,5,2,4,3,7)>,< 6, 1680, G!(9,11)(10,13,14)(12,15)>,< 6, 2352, G!(6,7)(9,14,10)>,< 6, 3360, G!(8,14,13,10,9,11)(12,15)>,< 6, 7350, G!(1,5,7)(8,9)(10,15)(11,12)(13,14)>,< 6, 11760, G!(1,6)(4,7)(8,11,10)>,< 6, 11760, G!(1,3)(2,6)(4,5)(11,13,15)>,< 6, 14700, G!(3,5,6)(8,11)(12,13)>,< 6, 22050, G!(1,6)(2,5,7)(3,4)(8,9)(10,12)(11,15)(13,14)>,< 6, 23520, G!(1,4,5)(2,6)(3,7)(8,12,13)>,< 6, 23520, G!(3,6)(8,14,11)(9,13,10)>,< 6, 29400, G!(1,7,6)(2,4,5)(8,11)(9,13)(10,12)(14,15)>,< 6, 35280, G!(2,4)(8,13)(9,11,14)(10,12)>,< 6, 44100, G!(1,7)(4,5,6)(8,9)(10,11)(12,13)(14,15)>,< 6, 44100, G!(1,3)(2,7)(4,6,5)(9,15)(11,13)>,< 6, 47040, G!(1,2,4)(5,7)(9,13,11)>,< 6, 58800, G!(1,7,3)(2,5,4)(9,14)(12,15)>,< 6, 70560, G!(2,6)(8,15,9,13,14,11)(10,12)>,< 6, 88200, G!(1,5,4,3,2,6)(8,11)(9,14)(10,15)(12,13)>,< 6, 88200, G!(1,2,6)(4,7)(8,10)(11,15)>,< 6, 94080, G!(1,3,4,7,5,2)(10,13,15)>,< 6, 117600, G!(2,4)(5,6)(9,15,12)(10,11,13)>,< 6, 117600, G!(1,5)(2,3)(4,6)(8,14,13)(9,12,10)>,< 6, 117600, G!(2,4,6)(8,10,13)(11,15)(12,14)>,< 6, 176400, G!(1,6)(2,7)(8,11)(10,13,12)(14,15)>,< 6, 176400, G!(1,5)(3,4)(6,7)(8,10)(9,14)(11,13,12)>,< 6, 176400, G!(1,5,2,6,4,3)(8,11)(13,15)>,< 6, 235200, G!(1,3)(2,7,4)(5,6)(8,13,12)(11,15,14)>,< 6, 235200, G!(5,7,6)(8,11,15,13,10,9)(12,14)>,< 6, 352800, G!(1,2)(3,5)(4,6)(8,9)(10,11,13,12,15,14)>,< 6, 352800, G!(1,4)(6,7)(8,14,9,12,15,10)(11,13)>,< 6, 352800, G!(1,4,3)(2,7)(5,6)(8,9)(10,12,15)(11,14)>,< 6, 470400, G!(1,7,5)(2,4,3)(8,11)(10,15,14)(12,13)>,< 6, 470400, G!(2,7,6)(3,5)(8,9,13)(11,15,14)>,< 6, 705600, G!(2,7,5)(3,4)(8,13,10)(9,11)(12,14)>,< 6, 705600, G!(1,3,4)(2,6)(5,7)(8,10)(9,11,12,13,14,15)>,< 6, 940800, G!(1,3,2,7,4,6)(8,15,11)(9,10,12)>,< 6, 940800, G!(1,5,4)(2,6,3)(8,14,15,9,12,13)(10,11)>,< 6, 1411200, G!(1,2,4,7,6,3)(8,14)(10,15,11)(12,13)>,< 6, 1411200, G!(1,7,6)(3,4)(8,13,15,9,12,11)(10,14)>,< 6, 2822400, G!(1,2,7,4,5,3)(8,14,10,13,15,11)(9,12)>,< 7, 720, G!(1,6,7,4,2,3,5)>,< 7, 2880, G!(8,15,10,9,13,14,12)>,< 7, 2880, G!(8,12,14,13,9,10,15)>,< 7, 2073600, G!(1,3,5,6,7,2,4)(8,15,14,10,13,9,11)>,< 7, 2073600, G!(1,4,2,7,6,5,3)(8,11,9,13,10,14,15)>,< 10, 504, G!(1,2,3,4,6)(5,7)>,< 10, 28224, G!(6,7)(8,13,11,15,12)>,< 10, 52920, G!(1,5,4,3,7)(2,6)(8,13)(9,11)(10,12)(14,15)>,< 10, 52920, G!(2,7,4,6,5)(8,10)(9,14)(11,13)(12,15)>,< 10, 105840, G!(1,2,3,7,6)(9,11)(12,15)>,< 10, 105840, G!(1,3,6,7,5)(2,4)(8,13)(10,12)>,< 10, 141120, G!(1,6)(4,7)(9,14,15,13,12)>,< 10, 141120, G!(1,4)(2,7)(3,5)(8,12,10,15,11)>,< 10, 677376, G!(1,5,6,7,2)(3,4)(10,13,11,14,15)>,< 12, 420, G!(1,4,2)(3,6,5,7)>,< 12, 23520, G!(1,3,6,5)(11,13,12)>,< 12, 44100, G!(1,2,4)(3,5,6,7)(8,9)(10,11)(12,13)(14,15)>,< 12, 47040, G!(1,5,4)(2,3,7,6)(11,12,14)>,< 12, 70560, G!(1,7,6,4)(2,5)(8,10,11)>,< 12, 88200, G!(1,5,4,6)(2,3,7)(8,13)(11,15)>,< 12, 88200, G!(5,7,6)(8,12,15,9)(10,11,14,13)>,< 12, 176400, G!(3,6,5)(8,12,11,13)(10,14)>,< 12, 235200, G!(1,6,4,3)(8,14,10)(9,11,15)>,< 12, 264600, G!(1,2)(3,4,6)(5,7)(8,13,11,10)(9,15,12,14)>,< 12, 352800, G!(1,6,4,5)(8,13,10)(9,12)(11,15)>,< 12, 352800, G!(1,4,7)(3,5,6)(8,11,9,13)(10,14,15,12)>,< 12, 470400, G!(1,6,3,5)(2,4,7)(8,12,13)(11,14,15)>,< 12, 529200, G!(1,3)(2,7,4)(5,6)(8,11,10,15)(9,12)>,< 12, 529200, G!(1,3,6,4)(2,7,5)(8,14,9,13)(10,15,12,11)>,< 12, 529200, G!(1,7,5)(3,6)(8,14,9,13)(10,11,15,12)>,< 12, 705600, G!(1,5,4)(2,7,6,3)(8,13,12)(9,15)(10,14)>,< 12, 705600, G!(2,4,5)(3,7,6)(9,12)(10,13,15,11)>,< 12, 705600, G!(3,6,4,7)(8,15,14,10,11,9)(12,13)>,< 12, 705600, G!(1,3,4,2)(5,6)(8,12,11)(9,14,10)>,< 12, 1058400, G!(1,2,7,4,6,5)(8,14,11,15)(9,10,13,12)>,< 12, 1058400, G!(1,5)(3,6,7,4)(9,11,14)(10,12)(13,15)>,< 12, 1058400, G!(1,5,4)(3,6)(8,9,15,14)(10,11)>,< 12, 1058400, G!(1,2,3,7)(4,5,6)(8,10)(9,11,15,13)>,< 12, 1411200, G!(1,6,4)(2,3,7,5)(8,11)(9,14,10,12,15,13)>,< 12, 2116800, G!(1,3)(2,5,4,6)(8,14)(9,10,15,11,12,13)>,< 12, 2116800, G!(1,5,7,4,3,2)(8,10)(9,15,14,12)>,< 14, 60480, G!(5,7)(8,13,15,11,12,10,9)>,< 14, 60480, G!(5,7)(8,9,10,12,11,15,13)>,< 14, 75600, G!(1,2,4,3,7,5,6)(8,13)(9,15)(10,14)(11,12)>,< 14, 151200, G!(1,2,6,3,7,5,4)(10,12)(14,15)>,< 14, 302400, G!(3,5)(6,7)(8,13,15,14,10,12,9)>,< 14, 302400, G!(3,5)(6,7)(8,9,12,10,14,15,13)>,< 14, 302400, G!(1,3)(2,7)(4,5)(8,15,13,10,11,12,9)>,< 14, 302400, G!(1,3)(2,7)(4,5)(8,9,12,11,10,13,15)>,< 15, 1344, G!(8,12,15,11,13)(9,14,10)>,< 15, 1344, G!(8,13,11,15,12)(9,10,14)>,< 15, 56448, G!(1,6,7,3,2)(10,13,14)>,< 15, 94080, G!(3,5,6)(8,12,10,14,13)>,< 15, 94080, G!(1,2,4)(8,12,14,15,10)(9,13,11)>,< 15, 94080, G!(1,4,2)(8,10,15,14,12)(9,11,13)>,< 15, 376320, G!(1,3,2)(4,5,7)(8,11,15,10,12)>,< 15, 376320, G!(1,5,4)(2,7,3)(8,9,14,12,11)(10,13,15)>,< 15, 376320, G!(1,4,5)(2,3,7)(8,11,12,14,9)(10,15,13)>,< 15, 564480, G!(1,7,3,4,5)(8,14,9)(11,13,15)>,< 15, 677376, G!(1,2,7,6,5)(8,12,9)(10,15,14,11,13)>,< 15, 677376, G!(1,5,6,7,2)(8,9,12)(10,13,11,14,15)>,< 20, 282240, G!(1,5,6,3)(8,15,9,10,14)>,< 20, 635040, G!(1,5,2,7,6)(8,11,13,15)(9,12,10,14)>,< 20, 635040, G!(1,7,2,6,5)(3,4)(8,11,14,12)(9,10,15,13)>,< 20, 846720, G!(1,4,6,7)(2,5)(9,13,14,12,15)>,< 20, 1270080, G!(1,7,2,6,4)(3,5)(8,9,11,13)(10,15)>,< 20, 1270080, G!(2,4,6,7,5)(10,11,14,15)(12,13)>,< 21, 80640, G!(1,3,2,7,5,6,4)(8,12,11)>,< 21, 201600, G!(1,4,2)(8,14,9,15,12,13,10)>,< 21, 201600, G!(1,2,4)(8,10,13,12,15,9,14)>,< 21, 806400, G!(1,3,6,4,5,2,7)(9,10,12)(11,15,14)>,< 21, 806400, G!(1,5,7)(2,3,4)(8,10,9,13,12,15,11)>,< 21, 806400, G!(1,7,5)(2,4,3)(8,11,15,12,13,9,10)>,< 28, 604800, G!(3,6,5,7)(8,10,13,12,15,9,14)>,< 28, 604800, G!(3,7,5,6)(8,14,9,15,12,13,10)>,< 28, 907200, G!(1,5,4,3,7,6,2)(8,11,12,13)(9,15,10,14)>,< 28, 1814400, G!(1,7,2,5,6,4,3)(8,11)(10,15,12,14)>,< 28, 1814400, G!(1,5,4,6)(3,7)(9,11,14,15,13,10,12)>,< 28, 1814400, G!(1,6,4,5)(3,7)(9,12,10,13,15,14,11)>,< 30, 28224, G!(6,7)(8,11,12,13,15)(9,10,14)>,< 30, 28224, G!(6,7)(8,11,12,15,13)(9,10,14)>,< 30, 56448, G!(1,3,5,2,4)(6,7)(9,14,15)>,< 30, 141120, G!(1,6)(4,7)(8,10,11)(9,15,12,14,13)>,< 30, 141120, G!(1,6)(4,7)(8,11,10)(9,13,14,12,15)>,< 30, 141120, G!(1,3)(2,6)(4,5)(8,14,12,9,10)(11,15,13)>,< 30, 141120, G!(1,3)(2,6)(4,5)(8,10,9,12,14)(11,13,15)>,< 30, 282240, G!(1,3)(2,7,4)(5,6)(8,11,9,14,10)>,< 30, 282240, G!(1,5,4)(2,7)(3,6)(8,10,9,15,13)(11,12,14)>,< 30, 282240, G!(1,4,5)(2,7)(3,6)(8,13,15,9,10)(11,14,12)>,< 30, 564480, G!(1,2)(3,6,5)(8,14,12,13,10)>,< 30, 564480, G!(1,2,4,7,5)(3,6)(8,11,14)(9,10,13)>,< 30, 564480, G!(1,4,2)(5,7)(8,15,12,10,14)(9,11,13)>,< 30, 564480, G!(1,2,4)(5,7)(8,14,10,12,15)(9,13,11)>,< 30, 677376, G!(1,6,2,5,7)(3,4)(8,9,12)(10,11,15,13,14)>,< 30, 677376, G!(1,7,5,2,6)(3,4)(8,12,9)(10,14,13,15,11)>,< 30, 846720, G!(1,3,6,2,7)(9,11)(10,14,13)(12,15)>,< 30, 846720, G!(1,6,5,3,7)(2,4)(8,13)(9,14,11)(10,12)>,< 30, 1128960, G!(1,7,3,4,2,5)(8,10,11,12,15)>,< 30, 1128960, G!(1,2,5,7,4,3)(8,12,9,11,14)(10,15,13)>,< 30, 1128960, G!(1,3,4,7,5,2)(8,14,11,9,12)(10,13,15)>,< 30, 1693440, G!(1,4,7,5,3)(2,6)(8,11,14,13,9,15)(10,12)>,< 30, 1693440, G!(2,4,5,7,6)(8,11,9,10,13,14)(12,15)>,< 35, 967680, G!(1,2,5,4,3,7,6)(9,14,10,15,13)>,< 35, 1451520, G!(1,2,3,4,6)(8,9,10,12,11,15,13)>,< 35, 1451520, G!(1,6,4,3,2)(8,13,15,11,12,10,9)>,< 42, 604800, G!(1,2,4)(3,5)(6,7)(8,12,14,13,9,10,15)>,< 42, 604800, G!(1,4,2)(3,5)(6,7)(8,15,10,9,13,14,12)>,< 42, 1209600, G!(1,7,6,4,3,5,2)(8,15)(10,14)(11,13,12)>,< 42, 1209600, G!(2,6)(3,4,7)(8,13,15,11,12,9,14)>,< 42, 1209600, G!(2,6)(3,7,4)(8,14,9,12,11,15,13)>,< 42, 2419200, G!(1,5,3,2,6,7,4)(8,13)(9,11,10,15,12,14)>,< 42, 2419200, G!(1,2,5,3,7,4)(8,12,10,15,9,11,13)>,< 42, 2419200, G!(1,4,7,3,5,2)(8,13,11,9,15,10,12)>,< 60, 282240, G!(1,3,6,5)(8,9,14,15,10)(11,12,13)>,< 60, 282240, G!(1,5,6,3)(8,10,15,14,9)(11,13,12)>,< 60, 564480, G!(1,5,3,6)(2,4,7)(8,14,11,10,9)>,< 60, 564480, G!(1,4,5)(2,3,7,6)(8,15,10,13,9)(11,14,12)>,< 60, 564480, G!(1,5,4)(2,6,7,3)(8,9,13,10,15)(11,12,14)>,< 60, 846720, G!(1,7,6,4)(2,5)(8,11,10)(9,14,15,13,12)>,< 60, 846720, G!(1,4,6,7)(2,5)(8,10,11)(9,12,13,15,14)>,< 70, 1451520, G!(1,4,2,6,3)(5,7)(8,11,9,15,10,13,12)>,< 70, 1451520, G!(1,3,6,2,4)(5,7)(8,12,13,10,15,9,11)>,< 84, 1209600, G!(1,4,2)(3,7,5,6)(8,9,12,10,14,15,13)>,< 84, 1209600, G!(1,2,4)(3,6,5,7)(8,13,15,14,10,12,9)>,< 105, 967680, G!(1,7,4,2,6,3,5)(8,11,12)(9,10,13,14,15)>,< 105, 967680, G!(1,5,3,6,2,4,7)(8,12,11)(9,15,14,13,10)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, 4, 0, 6, 2, 6, 4, 4, 0, 2, 0, 2, 3, 6, 0, 6, 3, 0, 3, 0, 2, 0, 6, 6, 2, 4, 2, 4, 0, 0, 0, 2, 0, 2, 2, 2, 0, 0, 1, 6, 1, -1, 1, 0, 6, 4, 6, 3, 2, 0, 3, -1, -1, 4, 0, 4, 1, -1, 1, 0, 4, 0, 1, 0, 2, 0, 3, 2, 0, 0, -1, 3, -1, 0, 2, 0, 1, 1, -1, 0, 0, 0, 1, 0, -1, 6, 6, -1, -1, -1, 4, -1, 1, 1, -1, 2, 0, -1, -1, 2, -1, -1, 0, -1, 3, 3, 2, -1, 2, 0, -1, -1, -1, 1, 0, -1, 2, 0, 1, 0, 0, -1, -1, 0, 0, 4, 4, -1, -1, 2, 2, 0, 0, 6, 6, 1, 3, 3, 3, 0, 0, 0, 1, 1, 1, 2, 1, -1, 0, -1, 1, -1, 3, 3, 0, -1, 0, 2, 2, -1, 0, -1, 0, 4, 4, -1, 2, 2, 0, 0, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 0, 0, 2, 2, -1, -1, -1, 0, 0, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[6, -4, 0, 6, 2, 6, -4, -4, 0, 2, 0, 2, 3, 6, 0, 6, 3, 0, 3, 0, -2, 0, 6, 6, -2, -4, -2, -4, 0, 0, 0, 2, 0, 2, -2, -2, 0, 0, 1, 6, 1, -1, -1, 0, 6, -4, 6, 3, 2, 0, 3, -1, -1, -4, 0, -4, -1, -1, -1, 0, -4, 0, -1, 0, 2, 0, 3, 2, 0, 0, -1, 3, -1, 0, 2, 0, -1, -1, -1, 0, 0, 0, -1, 0, -1, 6, 6, -1, -1, 1, -4, 1, 1, 1, 1, 2, 0, 1, 1, -2, 1, 1, 0, 1, 3, 3, -2, -1, -2, 0, 1, -1, 1, -1, 0, 1, -2, 0, -1, 0, 0, 1, 1, 0, 0, -4, -4, -1, -1, 2, 2, 0, 0, 6, 6, 1, 3, 3, 3, 0, 0, 0, 1, 1, 1, -2, 1, 1, 0, 1, 1, -1, 3, 3, 0, -1, 0, -2, -2, -1, 0, -1, 0, -4, -4, 1, 2, 2, 0, 0, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 0, 0, 0, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 0, 0, -2, -2, 1, 1, 1, 0, 0, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, 7, -1, 7, 3, -1, 3, -1, -1, 3, 3, 7, 4, 7, 1, 4, 4, 1, 1, 7, 7, -1, 1, -1, -1, 3, 1, -1, -1, 3, -1, 1, 1, -1, 1, -1, 1, 7, 2, 2, 7, 7, 7, 0, 4, -1, -1, 4, 4, 3, -1, 4, 1, -1, 0, -1, 3, 4, 3, -1, -1, 3, 4, 1, 1, 0, 0, 0, 3, 1, -1, 0, -1, -1, 0, 1, 0, -1, 1, -1, 0, -1, -1, 7, 0, 0, 0, 0, 7, 2, -1, -1, 3, 3, 2, 2, 2, 7, 4, -1, 4, 4, 3, -1, 1, 1, -1, 0, -1, 1, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, 0, -1, 3, 0, 0, 0, 0, -1, -1, 4, 2, -1, -1, 2, -1, -1, 1, -1, -1, 2, -1, -1, 2, 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, -1, 4, -1, -1, -1, -1, 2, -1, -1, 2, 1, -1, -1, -1, -1, 0, 0, 2, -1, -1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, -7, -7, -1, 7, 3, 1, -3, 1, -1, -3, 3, 7, 4, 7, 1, 4, 4, 1, 1, -7, 7, -1, 1, 1, 1, -3, -1, -1, 1, 3, -1, -1, 1, 1, -1, -1, 1, 7, 2, 2, 7, -7, -7, 0, -4, -1, -1, 4, -4, 3, -1, 4, -1, -1, 0, 1, 3, -4, 3, 1, 1, -3, -4, 1, -1, 0, 0, 0, -3, 1, -1, 0, 1, -1, 0, -1, 0, -1, -1, -1, 0, 1, 1, 7, 0, 0, 0, 0, -7, -2, 1, -1, 3, -3, 2, -2, -2, -7, -4, 1, -4, 4, -3, -1, 1, -1, -1, 0, -1, -1, 1, 1, 1, 1, 0, 1, 1, -1, 1, 0, -1, 1, -1, -1, 0, 0, -1, 3, 0, 0, 0, 0, -1, -1, 4, 2, -1, -1, 2, -1, -1, 1, -1, -1, -2, -1, 1, 2, -1, 1, 4, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 1, -4, -1, -1, 1, 1, 2, -1, -1, -2, -1, 1, 1, 1, 1, 0, 0, -2, 1, 1, 1, -1, 2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 14, 14, 6, 14, 2, 6, 2, 6, 6, 2, 2, 14, -1, 14, 2, -1, -1, 2, 2, 14, 14, 2, 0, 6, 2, 2, 0, 6, 2, 2, 2, 0, 0, 2, 0, 2, 0, 14, -1, -1, 14, 14, 14, -1, -1, 0, 6, -1, -1, 2, 6, -1, 2, 6, -1, 6, 2, -1, 2, 0, 6, 2, -1, 2, 2, -1, -1, -1, 2, 2, 0, -1, 0, 0, -1, 2, -1, 0, 2, 0, -1, 0, 0, 14, 0, 0, 0, 0, 14, -1, 6, 6, 2, 2, -1, -1, -1, 14, -1, 6, -1, -1, 2, 2, 0, 2, 2, -1, 2, 2, 0, 2, 2, 2, -1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, 2, 2, -1, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 6, 2, 14, 2, 14, 6, 6, 2, 2, 2, 2, 2, 14, -1, 14, 2, -1, 2, -1, 0, 0, 14, 14, 0, 6, 0, 6, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, -1, 14, -1, 2, 0, -1, 14, 6, 14, 2, 2, 2, 2, 2, 2, 6, -1, 6, 0, 2, 0, -1, 6, -1, 0, -1, 2, 2, 2, 2, 2, -1, 2, 2, 2, 2, 2, -1, 0, 0, 2, -1, -1, -1, 0, -1, 0, 14, 14, 0, 0, 1, 6, 1, -1, -1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, -1, 0, 2, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, 6, 6, 0, 0, 2, 2, 2, 2, 14, 14, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1, 0, -1, 1, 0, 1, -1, 0, 2, 2, -1, 0, -1, 0, 0, 0, 0, 0, 0, 6, 6, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 0, 0, 1, 1, -1, 1, -1, -1, -1, 1, -1, 0, -1, -1, 2, 2, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, -4, 0, 14, 2, 14, -4, -4, 0, 2, 0, 2, -1, 14, 2, 14, -1, 2, -1, 2, 2, 0, 14, 14, 2, -4, 2, -4, 0, 0, 0, 2, 0, 2, 2, 2, 0, 0, -1, 14, -1, -1, -1, 0, 14, -4, 14, -1, 2, 0, -1, -1, -1, -4, 2, -4, -1, -1, -1, 2, -4, 0, -1, 0, 2, 0, -1, 2, 0, 0, -1, -1, -1, 0, 2, 2, -1, -1, -1, 0, 2, 0, -1, 0, 0, 14, 14, 0, 0, 1, -4, 1, -1, -1, 1, 2, 0, 1, -1, 2, -1, -1, 0, -1, -1, -1, 2, -1, 2, 2, -1, -1, -1, -1, 0, -1, 2, 2, -1, 0, 0, -1, -1, 0, 0, -4, -4, 0, 0, 2, 2, 0, 0, 14, 14, -1, -1, -1, -1, 2, 2, 2, -1, -1, -1, 2, -1, 1, 0, 1, -1, 0, -1, -1, 2, 0, 2, 2, 2, 0, 0, 0, 0, -4, -4, 1, 2, 2, 0, 0, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 0, 0, 0, 1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, 4, 0, 14, 2, 14, 4, 4, 0, 2, 0, 2, -1, 14, 2, 14, -1, 2, -1, 2, -2, 0, 14, 14, -2, 4, -2, 4, 0, 0, 0, 2, 0, 2, -2, -2, 0, 0, -1, 14, -1, -1, 1, 0, 14, 4, 14, -1, 2, 0, -1, -1, -1, 4, 2, 4, 1, -1, 1, 2, 4, 0, 1, 0, 2, 0, -1, 2, 0, 0, -1, -1, -1, 0, 2, 2, 1, 1, -1, 0, 2, 0, 1, 0, 0, 14, 14, 0, 0, -1, 4, -1, -1, -1, -1, 2, 0, -1, 1, -2, 1, 1, 0, 1, -1, -1, -2, -1, -2, 2, 1, -1, 1, 1, 0, 1, -2, 2, 1, 0, 0, 1, 1, 0, 0, 4, 4, 0, 0, 2, 2, 0, 0, 14, 14, -1, -1, -1, -1, 2, 2, 2, -1, -1, -1, -2, -1, -1, 0, -1, -1, 0, -1, -1, 2, 0, 2, -2, -2, 0, 0, 0, 0, 4, 4, -1, 2, 2, 0, 0, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 0, 0, 0, -1, -1, 0, -1, -1, -1, -1, 0, 1, 1, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, -14, -14, 6, 14, 2, -6, -2, -6, 6, -2, 2, 14, -1, 14, 2, -1, -1, 2, 2, -14, 14, 2, 0, -6, -2, -2, 0, 6, -2, 2, 2, 0, 0, -2, 0, 2, 0, 14, -1, -1, 14, -14, -14, -1, 1, 0, 6, -1, 1, 2, 6, -1, -2, 6, 1, -6, 2, 1, 2, 0, -6, -2, 1, 2, -2, -1, -1, 1, -2, 2, 0, -1, 0, 0, -1, -2, 1, 0, -2, 0, 1, 0, 0, 14, 0, 0, 0, 0, -14, 1, -6, 6, 2, -2, -1, 1, 1, -14, 1, -6, 1, -1, -2, 2, 0, -2, 2, 1, 2, -2, 0, -2, -2, 2, 1, 0, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, 1, 2, -2, -1, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -2, 1, 1, 1, 1, -1, 1, 1, 1, 1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[14, -6, -2, 14, 2, 14, -6, -6, -2, 2, -2, 2, 2, 14, -1, 14, 2, -1, 2, -1, 0, 0, 14, 14, 0, -6, 0, -6, 0, -2, 0, 2, -2, 2, 0, 0, 0, 0, -1, 14, -1, 2, 0, 1, 14, -6, 14, 2, 2, -2, 2, 2, 2, -6, -1, -6, 0, 2, 0, -1, -6, 1, 0, 1, 2, -2, 2, 2, -2, 1, 2, 2, 2, -2, 2, -1, 0, 0, 2, 1, -1, 1, 0, 1, 0, 14, 14, 0, 0, -1, -6, -1, -1, -1, -1, 2, -2, -1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, -1, 0, 2, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, -6, -6, 0, 0, 2, 2, -2, -2, 14, 14, -1, 2, 2, 2, -1, -1, -1, -1, -1, -1, 0, -1, -1, 0, -1, -1, 0, 2, 2, -1, 0, -1, 0, 0, 0, 0, 0, 0, -6, -6, -1, 2, 2, -2, -2, 2, 2, 2, 0, -1, 0, 0, -1, -1, -1, -1, 1, 1, 1, -1, -1, 0, -1, -1, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[15, -5, 3, 15, -1, 15, -5, -5, 3, -1, 3, -1, 3, 15, 0, 15, 3, 0, 3, 0, -1, -1, 15, 15, -1, -5, -1, -5, -1, 3, -1, -1, 3, -1, -1, -1, -1, -1, 0, 15, 0, -1, 1, 0, 15, -5, 15, 3, -1, 3, 3, -1, -1, -5, 0, -5, 1, -1, 1, 0, -5, 0, 1, 0, -1, 3, 3, -1, 3, 0, -1, 3, -1, 3, -1, 0, 1, 1, -1, 0, 0, 0, 1, 0, 1, 15, 15, 1, 1, 0, -5, 0, 0, 0, 0, -1, 3, 0, -1, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, 0, -1, -1, -1, 1, -1, -1, -1, 0, 1, 0, -1, -1, -1, -1, 0, -5, -5, 1, 1, -1, -1, 3, 3, 15, 15, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 3, 3, 0, 1, 0, -1, -1, 1, -1, 1, -1, -5, -5, 0, -1, -1, 3, 3, -1, -1, -1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, -1, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[15, 5, -3, 15, -1, 15, 5, 5, -3, -1, -3, -1, 3, 15, 0, 15, 3, 0, 3, 0, 1, -1, 15, 15, 1, 5, 1, 5, -1, -3, -1, -1, -3, -1, 1, 1, -1, -1, 0, 15, 0, -1, -1, 0, 15, 5, 15, 3, -1, -3, 3, -1, -1, 5, 0, 5, -1, -1, -1, 0, 5, 0, -1, 0, -1, -3, 3, -1, -3, 0, -1, 3, -1, -3, -1, 0, -1, -1, -1, 0, 0, 0, -1, 0, 1, 15, 15, 1, 1, 0, 5, 0, 0, 0, 0, -1, -3, 0, 1, 1, 1, 1, -1, 1, 3, 3, 1, -1, 1, 0, 1, -1, 1, -1, -1, 1, 1, 0, -1, 0, -1, 1, 1, -1, 0, 5, 5, 1, 1, -1, -1, -3, -3, 15, 15, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, 3, 3, 0, 1, 0, 1, 1, 1, -1, 1, -1, 5, 5, 0, -1, -1, -3, -3, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, -1, 1, -1, -1, 1, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 20, 20, 4, 20, 4, 4, 4, 4, 4, 4, 4, 20, 5, 20, -1, 5, 5, -1, -1, 20, 20, 0, 0, 4, 0, 4, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 20, 20, 20, 1, 5, 1, 4, 5, 5, 4, 4, 5, -1, 4, 1, 4, 4, 5, 4, 1, 4, 4, 5, -1, -1, 1, 1, 1, 4, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 20, -1, -1, -1, -1, 20, 0, 4, 4, 4, 4, 0, 0, 0, 20, 5, 4, 5, 5, 4, 0, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, -1, -1, 4, 4, -1, -1, -1, -1, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 5, -1, -1, -1, -1, -1, -1, -1, 0, -1, 0, -1, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, -20, -20, 4, 20, 4, -4, -4, -4, 4, -4, 4, 20, 5, 20, -1, 5, 5, -1, -1, -20, 20, 0, 0, -4, 0, -4, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 20, -20, -20, 1, -5, 1, 4, 5, -5, 4, 4, 5, 1, 4, -1, -4, 4, -5, 4, -1, -4, -4, -5, -1, 1, 1, 1, -1, -4, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 20, -1, -1, -1, -1, -20, 0, -4, 4, 4, -4, 0, 0, 0, -20, -5, -4, -5, 5, -4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 1, 0, -1, 1, 0, 1, 1, 4, 4, -1, -1, 1, 1, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 5, -1, -1, -1, -1, -1, 1, 1, 0, -1, 0, -1, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[20, 0, 0, 20, -4, 20, 0, 0, 0, -4, 0, -4, 2, 20, 2, 20, 2, 2, 2, 2, 0, 0, 20, 20, 0, 0, 0, 0, 0, 0, 0, -4, 0, -4, 0, 0, 0, 0, 0, 20, 0, 2, 0, 0, 20, 0, 20, 2, -4, 0, 2, 2, 2, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, -4, 0, 2, -4, 0, 0, 2, 2, 2, 0, -4, 2, 0, 0, 2, 0, 2, 0, 0, 0, -1, 20, 20, -1, -1, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -4, -4, 0, 0, 20, 20, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 2, 2, -1, 2, 0, 0, -1, 0, -1, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 2, 2, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -1, 3, 21, 1, 21, -1, -1, 3, 1, 3, 1, -3, 21, 0, 21, -3, 0, -3, 0, 1, -1, 21, 21, 1, -1, 1, -1, -1, 3, -1, 1, 3, 1, 1, 1, -1, -1, 1, 21, 1, 1, -1, 0, 21, -1, 21, -3, 1, 3, -3, 1, 1, -1, 0, -1, -1, 1, -1, 0, -1, 0, -1, 0, 1, 3, -3, 1, 3, 0, 1, -3, 1, 3, 1, 0, -1, -1, 1, 0, 0, 0, -1, 0, 0, 21, 21, 0, 0, -1, -1, -1, 1, 1, -1, 1, 3, -1, 1, 1, 1, 1, -1, 1, -3, -3, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 0, -1, 0, -1, 1, 1, -1, 0, -1, -1, 0, 0, 1, 1, 3, 3, 21, 21, 1, -3, -3, -3, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, -1, 1, 0, -3, -3, 0, 0, 0, 1, 1, 0, -1, 0, -1, -1, -1, -1, 1, 1, 3, 3, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 0, 0, 0, -1, 1, 0, 1, 1, 1, 1, 0, -1, -1, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, -21, -21, -3, 21, 1, 3, -1, 3, -3, -1, 1, 21, 6, 21, 0, 6, 6, 0, 0, -21, 21, 1, -1, 3, -1, -1, 1, -3, -1, 1, 1, 1, -1, -1, 1, 1, -1, 21, 1, 1, 21, -21, -21, -2, -6, 0, -3, 6, -6, 1, -3, 6, 0, -3, 2, 3, 1, -6, 1, 0, 3, -1, -6, 0, 0, -2, -2, 2, -1, 0, 0, -2, 0, 0, -2, 0, 2, 0, 0, 0, 2, 0, 0, 21, 0, 0, 0, 0, -21, -1, 3, -3, 1, -1, 1, -1, -1, -21, -6, 3, -6, 6, -1, 1, -1, 0, 1, 2, 1, 0, -1, -1, -1, 0, 2, 0, -1, 1, -1, -2, 1, 0, 0, 1, 0, 0, -3, 1, 0, 0, 0, 0, 1, 1, 6, 1, 1, 1, 1, 1, 1, 0, 1, 1, -1, 1, -1, 1, 1, -1, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, -1, -1, -6, 1, 1, -1, -1, 1, 1, 1, -1, 0, -1, -1, -1, -1, -2, 2, -1, -1, -1, 0, 0, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, 21, -3, 21, 1, -3, 1, -3, -3, 1, 1, 21, 6, 21, 0, 6, 6, 0, 0, 21, 21, 1, -1, -3, 1, 1, -1, -3, 1, 1, 1, -1, -1, 1, -1, 1, -1, 21, 1, 1, 21, 21, 21, -2, 6, 0, -3, 6, 6, 1, -3, 6, 0, -3, -2, -3, 1, 6, 1, 0, -3, 1, 6, 0, 0, -2, -2, -2, 1, 0, 0, -2, 0, 0, -2, 0, -2, 0, 0, 0, -2, 0, 0, 21, 0, 0, 0, 0, 21, 1, -3, -3, 1, 1, 1, 1, 1, 21, 6, -3, 6, 6, 1, 1, -1, 0, 1, -2, 1, 0, -1, 1, 1, 0, -2, 0, -1, -1, 1, -2, -1, 0, 0, -1, 0, 0, -3, 1, 0, 0, 0, 0, 1, 1, 6, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -1, -1, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -2, -2, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 1, -3, 21, 1, 21, 1, 1, -3, 1, -3, 1, -3, 21, 0, 21, -3, 0, -3, 0, -1, -1, 21, 21, -1, 1, -1, 1, -1, -3, -1, 1, -3, 1, -1, -1, -1, -1, 1, 21, 1, 1, 1, 0, 21, 1, 21, -3, 1, -3, -3, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, -3, -3, 1, -3, 0, 1, -3, 1, -3, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 21, 21, 0, 0, 1, 1, 1, 1, 1, 1, 1, -3, 1, -1, -1, -1, -1, -1, -1, -3, -3, -1, 1, -1, 0, -1, 1, -1, 1, -1, -1, -1, 0, 1, 0, -1, -1, -1, -1, 0, 1, 1, 0, 0, 1, 1, -3, -3, 21, 21, 1, -3, -3, -3, 0, 0, 0, 1, 1, 1, -1, 1, 1, -1, 1, 1, 0, -3, -3, 0, 0, 0, -1, -1, 0, -1, 0, -1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |21,-21,-21,-3,21,1,3,-1,3,-3,-1,1,21,-3,21,0,-3,-3,0,0,-21,21,1,-1,3,-1,-1,1,-3,-1,1,1,1,-1,-1,1,1,-1,21,1,1,21,-21,-21,1,3,0,-3,-3,3,1,-3,-3,0,-3,-1,3,1,3,1,0,3,-1,3,0,0,1,1,-1,-1,0,0,1,0,0,1,0,-1,0,0,0,-1,0,0,21,0,0,0,0,-21,-1,3,-3,1,-1,1,-1,-1,-21,3,3,3,-3,-1,1,-1,0,1,-1,1,0,-1,-1,-1,0,-1,0,-1,1,-1,1,1,0,0,1,0,0,-3,1,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-3,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,1,-1,1,1,-1,-3,0,0,0,0,0,0,0,1,0,-1,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,3,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,-1,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,1,0,0,0,0,1,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |21,-21,-21,-3,21,1,3,-1,3,-3,-1,1,21,-3,21,0,-3,-3,0,0,-21,21,1,-1,3,-1,-1,1,-3,-1,1,1,1,-1,-1,1,1,-1,21,1,1,21,-21,-21,1,3,0,-3,-3,3,1,-3,-3,0,-3,-1,3,1,3,1,0,3,-1,3,0,0,1,1,-1,-1,0,0,1,0,0,1,0,-1,0,0,0,-1,0,0,21,0,0,0,0,-21,-1,3,-3,1,-1,1,-1,-1,-21,3,3,3,-3,-1,1,-1,0,1,-1,1,0,-1,-1,-1,0,-1,0,-1,1,-1,1,1,0,0,1,0,0,-3,1,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-3,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,1,-1,1,1,-1,-3,0,0,0,0,0,0,0,1,0,-1,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,3,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-1,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,1,0,0,0,0,1,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |21,21,21,-3,21,1,-3,1,-3,-3,1,1,21,-3,21,0,-3,-3,0,0,21,21,1,-1,-3,1,1,-1,-3,1,1,1,-1,-1,1,-1,1,-1,21,1,1,21,21,21,1,-3,0,-3,-3,-3,1,-3,-3,0,-3,1,-3,1,-3,1,0,-3,1,-3,0,0,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,21,0,0,0,0,21,1,-3,-3,1,1,1,1,1,21,-3,-3,-3,-3,1,1,-1,0,1,1,1,0,-1,1,1,0,1,0,-1,-1,1,1,-1,0,0,-1,0,0,-3,1,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-3,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1,1,1,-1,-1,-3,0,0,0,0,0,0,0,1,0,-1,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-3,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,1,0,0,0,0,1,0,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |21,21,21,-3,21,1,-3,1,-3,-3,1,1,21,-3,21,0,-3,-3,0,0,21,21,1,-1,-3,1,1,-1,-3,1,1,1,-1,-1,1,-1,1,-1,21,1,1,21,21,21,1,-3,0,-3,-3,-3,1,-3,-3,0,-3,1,-3,1,-3,1,0,-3,1,-3,0,0,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,21,0,0,0,0,21,1,-3,-3,1,1,1,1,1,21,-3,-3,-3,-3,1,1,-1,0,1,1,1,0,-1,1,1,0,1,0,-1,-1,1,1,-1,0,0,-1,0,0,-3,1,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-3,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1,1,1,-1,-1,-3,0,0,0,0,0,0,0,1,0,-1,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-3,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,1,0,0,0,0,1,0,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[28, 28, 28, -4, 28, 4, -4, 4, -4, -4, 4, 4, 28, 1, 28, 1, 1, 1, 1, 1, 28, 28, 0, 0, -4, 0, 4, 0, -4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 28, -2, -2, 28, 28, 28, 1, 1, -1, -4, 1, 1, 4, -4, 1, 1, -4, 1, -4, 4, 1, 4, -1, -4, 4, 1, 1, 1, 1, 1, 1, 4, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, 1, -1, -1, 28, 0, 0, 0, 0, 28, -2, -4, -4, 4, 4, -2, -2, -2, 28, 1, -4, 1, 1, 4, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, -1, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, -4, 4, 0, 0, 0, 0, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, 1, 1, -2, 0, 0, -2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, -2, 1, 1, -1, -1, -2, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, 1, -2, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[28, -28, -28, -4, 28, 4, 4, -4, 4, -4, -4, 4, 28, 1, 28, 1, 1, 1, 1, 1, -28, 28, 0, 0, 4, 0, -4, 0, -4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 28, -2, -2, 28, -28, -28, 1, -1, -1, -4, 1, -1, 4, -4, 1, -1, -4, -1, 4, 4, -1, 4, 1, 4, -4, -1, 1, -1, 1, 1, -1, -4, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 28, 0, 0, 0, 0, -28, 2, 4, -4, 4, -4, -2, 2, 2, -28, -1, 4, -1, 1, -4, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, -1, 0, 0, 0, -4, 4, 0, 0, 0, 0, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, 1, 1, 2, 0, 0, -2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, -1, -1, -2, 1, 1, 2, -1, -1, -1, -1, -1, 1, -1, 2, -1, -1, 1, -1, -2, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, -1, 2, -1, -1, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[35, -35, -35, 3, 35, -5, -3, 5, -3, 3, 5, -5, 35, 5, 35, 2, 5, 5, 2, 2, -35, 35, -1, -1, -3, 1, 5, 1, 3, 1, -5, -1, 1, -1, 1, 1, -1, -1, 35, 0, 0, 35, -35, -35, 1, -5, 0, 3, 5, -5, -5, 3, 5, -2, 3, -1, -3, -5, -5, -5, 0, -3, 5, -5, 2, -2, 1, 1, -1, 5, 2, 0, 1, 0, 0, 1, -2, -1, 0, -2, 0, -1, 0, 0, 35, 0, 0, 0, 0, -35, 0, -3, 3, -5, 5, 0, 0, 0, -35, -5, -3, -5, 5, 5, -1, -1, -2, -1, -1, -1, -2, -1, 1, 1, 2, -1, 0, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 3, -5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -1, 1, 0, 1, -1, 5, 0, 0, 0, 2, 0, 0, 0, -1, 0, -1, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[35, 5, 1, 35, -1, 35, 5, 5, 1, -1, 1, -1, -1, 35, -1, 35, -1, -1, -1, -1, -1, 1, 35, 35, -1, 5, -1, 5, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 0, 35, 0, -1, -1, 1, 35, 5, 35, -1, -1, 1, -1, -1, -1, 5, -1, 5, -1, -1, -1, -1, 5, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 0, 35, 35, 0, 0, 0, 5, 0, 0, 0, 0, -1, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 5, 5, 0, 0, -1, -1, 1, 1, 35, 35, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, 1, 0, 1, 5, 5, 0, -1, -1, 1, 1, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, -1, -1, 0, 1, 1, -1, -1, -1, -1, -1, 1, 1, 0, 0, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[35, 35, 35, 3, 35, -5, 3, -5, 3, 3, -5, -5, 35, 5, 35, 2, 5, 5, 2, 2, 35, 35, -1, -1, 3, -1, -5, -1, 3, -1, -5, -1, -1, -1, -1, -1, -1, -1, 35, 0, 0, 35, 35, 35, 1, 5, 0, 3, 5, 5, -5, 3, 5, 2, 3, 1, 3, -5, 5, -5, 0, 3, -5, 5, 2, 2, 1, 1, 1, -5, 2, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 1, 0, 0, 35, 0, 0, 0, 0, 35, 0, 3, 3, -5, -5, 0, 0, 0, 35, 5, 3, 5, 5, -5, -1, -1, 2, -1, 1, -1, 2, -1, -1, -1, 2, 1, 0, -1, -1, -1, 1, -1, 0, 0, -1, 0, 0, 3, -5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -1, -1, 0, -1, -1, 5, 0, 0, 0, 2, 0, 0, 0, -1, 0, -1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[35, -5, -1, 35, -1, 35, -5, -5, -1, -1, -1, -1, -1, 35, -1, 35, -1, -1, -1, -1, 1, 1, 35, 35, 1, -5, 1, -5, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 0, 35, 0, -1, 1, -1, 35, -5, 35, -1, -1, -1, -1, -1, -1, -5, -1, -5, 1, -1, 1, -1, -5, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 0, 35, 35, 0, 0, 0, -5, 0, 0, 0, 0, -1, -1, 0, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -5, -5, 0, 0, -1, -1, -1, -1, 35, 35, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, -1, -1, 0, -1, 1, 1, 0, 1, 0, 1, -5, -5, 0, -1, -1, -1, -1, -1, -1, -1, 1, 0, 1, 1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 1, 0, -1, -1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, 28, 0, -6, 14, 18, -4, 12, 0, -2, 0, 6, 21, 24, 0, 6, 12, 0, 3, 0, 14, 0, -6, 6, -2, -4, 6, 4, 0, 0, 0, -2, 0, 2, -2, 2, 0, 0, 7, 12, 2, -7, 7, 0, 0, 16, -6, -3, 8, 0, 9, 1, -4, 4, 0, 0, -1, -3, 4, 0, -4, 0, 3, 0, 2, 0, 0, 0, 0, 0, -1, -3, 0, 0, -2, 0, 1, 0, 1, 0, 0, 0, -1, 0, -7, 0, 0, 0, 0, -7, 8, 1, -1, 3, -3, 4, 0, -2, -7, 8, 1, -4, 0, -3, -3, 3, 2, 1, 0, 0, -1, -1, 1, -1, 0, 0, -2, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 1, -3, 0, 0, 0, 0, -6, -6, 4, 6, -3, -3, 0, 0, 0, 1, -1, -1, 4, -1, 1, 0, -1, 1, -4, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, -4, -4, -4, -2, -2, 0, 0, -2, 1, 1, 2, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 1, -1, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -2, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[42, -28, 0, -6, 14, 18, 4, -12, 0, -2, 0, 6, 21, 24, 0, 6, 12, 0, 3, 0, -14, 0, -6, 6, 2, 4, -6, -4, 0, 0, 0, -2, 0, 2, 2, -2, 0, 0, 7, 12, 2, -7, -7, 0, 0, -16, -6, -3, 8, 0, 9, 1, -4, -4, 0, 0, 1, -3, -4, 0, 4, 0, -3, 0, 2, 0, 0, 0, 0, 0, -1, -3, 0, 0, -2, 0, -1, 0, 1, 0, 0, 0, 1, 0, -7, 0, 0, 0, 0, 7, -8, -1, -1, 3, 3, 4, 0, 2, 7, -8, -1, 4, 0, 3, -3, 3, -2, 1, 0, 0, 1, -1, -1, 1, 0, 0, 2, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -3, 0, 0, 0, 0, -6, -6, 4, 6, -3, -3, 0, 0, 0, 1, -1, -1, -4, -1, -1, 0, 1, 1, -4, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 4, 4, 4, -2, -2, 0, 0, -2, 1, 1, -2, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |45,45,45,-3,45,-3,-3,-3,-3,-3,-3,-3,45,0,45,0,0,0,0,0,45,45,1,1,-3,1,-3,1,-3,1,-3,1,1,1,1,1,1,1,45,0,0,45,45,45,0,0,0,-3,0,0,-3,-3,0,0,-3,0,-3,-3,0,-3,0,-3,-3,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,45,0,-3,-3,-3,-3,0,0,0,45,0,-3,0,0,-3,1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,0,1,0,0,1,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-3,-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1,K.1+K.1^2+K.1^-3,1,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |45,45,45,-3,45,-3,-3,-3,-3,-3,-3,-3,45,0,45,0,0,0,0,0,45,45,1,1,-3,1,-3,1,-3,1,-3,1,1,1,1,1,1,1,45,0,0,45,45,45,0,0,0,-3,0,0,-3,-3,0,0,-3,0,-3,-3,0,-3,0,-3,-3,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,45,0,-3,-3,-3,-3,0,0,0,45,0,-3,0,0,-3,1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,0,1,0,0,1,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-3,-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1,-1-K.1-K.1^2-K.1^-3,1,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |45,-45,-45,-3,45,-3,3,3,3,-3,3,-3,45,0,45,0,0,0,0,0,-45,45,1,1,3,-1,3,-1,-3,-1,-3,1,-1,1,-1,-1,1,1,45,0,0,45,-45,-45,0,0,0,-3,0,0,-3,-3,0,0,-3,0,3,-3,0,-3,0,3,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-45,0,3,-3,-3,3,0,0,0,-45,0,3,0,0,3,1,1,0,1,0,1,0,1,-1,-1,0,0,0,1,-1,-1,0,-1,0,0,-1,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-3,-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,1,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1,K.1+K.1^2+K.1^-3,1,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |45,-45,-45,-3,45,-3,3,3,3,-3,3,-3,45,0,45,0,0,0,0,0,-45,45,1,1,3,-1,3,-1,-3,-1,-3,1,-1,1,-1,-1,1,1,45,0,0,45,-45,-45,0,0,0,-3,0,0,-3,-3,0,0,-3,0,3,-3,0,-3,0,3,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-45,0,3,-3,-3,3,0,0,0,-45,0,3,0,0,3,1,1,0,1,0,1,0,1,-1,-1,0,0,0,1,-1,-1,0,-1,0,0,-1,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-3,-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,1,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1,-1-K.1-K.1^2-K.1^-3,1,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[56, 56, 56, 8, 56, 0, 8, 0, 8, 8, 0, 0, 56, -4, 56, -1, -4, -4, -1, -1, 56, 56, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 1, 56, 56, 56, 0, -4, -1, 8, -4, -4, 0, 8, -4, -1, 8, 0, 8, 0, -4, 0, -1, 8, 0, -4, -1, -1, 0, 0, 0, 0, -1, -1, 0, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, 56, 0, 0, 0, 0, 56, 1, 8, 8, 0, 0, 1, 1, 1, 56, -4, 8, -4, -4, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 8, 0, 0, 0, 0, 0, 1, 1, -4, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0, 0, 1, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -4, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[56, -56, -56, 8, 56, 0, -8, 0, -8, 8, 0, 0, 56, -4, 56, -1, -4, -4, -1, -1, -56, 56, 0, 0, -8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 1, 56, -56, -56, 0, 4, -1, 8, -4, 4, 0, 8, -4, 1, 8, 0, -8, 0, 4, 0, 1, -8, 0, 4, -1, 1, 0, 0, 0, 0, -1, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, 1, 56, 0, 0, 0, 0, -56, -1, -8, 8, 0, 0, 1, -1, -1, -56, 4, -8, 4, -4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 8, 0, 0, 0, 0, 0, 1, 1, -4, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 0, 0, 1, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 4, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 0, 0, -1, -1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[64, 64, 64, 0, 64, 0, 0, 0, 0, 0, 0, 0, 64, 4, 64, -2, 4, 4, -2, -2, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, -1, -1, 64, 64, 64, 0, 4, 0, 0, 4, 4, 0, 0, 4, -2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, -2, -2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 64, 1, 1, 1, 1, 64, -1, 0, 0, 0, 0, -1, -1, -1, 64, 4, 0, 4, 4, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, -1, -1, 4, -1, -1, -1, -1, -1, -1, -2, -1, -1, -1, 0, 0, -1, 0, 0, 4, 1, 1, 1, -2, 1, 1, 1, 0, 1, 0, 1, -1, -1, 4, -1, -1, -1, -1, -1, -1, -1, -1, -2, -1, -1, -1, -1, 0, 0, -1, -1, -1, 0, 0, -1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[64, -64, -64, 0, 64, 0, 0, 0, 0, 0, 0, 0, 64, 4, 64, -2, 4, 4, -2, -2, -64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, -1, -1, 64, -64, -64, 0, -4, 0, 0, 4, -4, 0, 0, 4, 2, 0, 0, 0, 0, -4, 0, 0, 0, 0, -4, -2, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 64, 1, 1, 1, 1, -64, 1, 0, 0, 0, 0, -1, 1, 1, -64, -4, 0, -4, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 1, 1, -1, -1, -1, -1, 4, -1, -1, -1, -1, -1, -1, -2, -1, -1, 1, 0, 0, -1, 0, 0, 4, 1, 1, 1, -2, 1, -1, -1, 0, 1, 0, 1, 1, 1, -4, -1, -1, 1, 1, -1, -1, -1, 1, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, -1, 1, 1, 1, 1, 0, -1, -1, 0, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[70, 70, 70, -2, 70, 2, -2, 2, -2, -2, 2, 2, 70, -5, 70, 1, -5, -5, 1, 1, 70, 70, -2, 0, -2, -2, 2, 0, -2, -2, 2, -2, 0, 0, -2, 0, -2, 0, 70, 0, 0, 70, 70, 70, -1, -5, 1, -2, -5, -5, 2, -2, -5, 1, -2, -1, -2, 2, -5, 2, 1, -2, 2, -5, 1, 1, -1, -1, -1, 2, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 70, 0, 0, 0, 0, 70, 0, -2, -2, 2, 2, 0, 0, 0, 70, -5, -2, -5, -5, 2, -2, 0, 1, -2, -1, -2, 1, 0, -2, -2, 1, -1, 1, 0, 0, -2, -1, 0, 1, 1, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, -2, 0, 0, 0, -5, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[70, -70, -70, -2, 70, 2, 2, -2, 2, -2, -2, 2, 70, -5, 70, 1, -5, -5, 1, 1, -70, 70, -2, 0, 2, 2, -2, 0, -2, 2, 2, -2, 0, 0, 2, 0, -2, 0, 70, 0, 0, 70, -70, -70, -1, 5, 1, -2, -5, 5, 2, -2, -5, -1, -2, 1, 2, 2, 5, 2, -1, 2, -2, 5, 1, -1, -1, -1, 1, -2, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 70, 0, 0, 0, 0, -70, 0, 2, -2, 2, -2, 0, 0, 0, -70, 5, 2, 5, -5, -2, -2, 0, -1, -2, 1, -2, -1, 0, 2, 2, 1, 1, -1, 0, 0, 2, -1, 0, -1, 1, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 2, 0, 0, 0, -5, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[84, 56, 0, 36, 28, 12, 24, 8, 0, 12, 0, 4, 42, -6, 0, 12, -3, 0, 6, 0, 28, 0, 12, 0, 12, 8, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 14, -6, -1, -14, 14, 0, -6, -4, 0, 18, -2, 0, 6, -6, 1, 8, 0, -4, 6, -2, -1, 0, 0, 0, 2, 0, 4, 0, -3, -2, 0, 0, -2, 0, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, -14, 0, 0, 0, 0, -14, -4, -6, 6, 2, -2, -2, 0, 1, -14, -2, -6, 1, 0, -2, 6, 0, 4, -2, -2, 0, -2, 0, -2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -2, 0, 0, 0, 0, -6, -6, -1, -3, -3, -3, 0, 0, 0, 2, -1, -1, -2, 2, -2, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, -4, -4, 1, -2, -2, 0, 0, 1, 1, 1, -1, -2, -1, -1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[84, -56, 0, 36, 28, 12, -24, -8, 0, 12, 0, 4, 42, -6, 0, 12, -3, 0, 6, 0, -28, 0, 12, 0, -12, -8, -4, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 0, 14, -6, -1, -14, -14, 0, -6, 4, 0, 18, -2, 0, 6, -6, 1, -8, 0, 4, -6, -2, 1, 0, 0, 0, -2, 0, 4, 0, -3, -2, 0, 0, -2, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, -14, 0, 0, 0, 0, 14, 4, 6, 6, 2, 2, -2, 0, -1, 14, 2, 6, -1, 0, 2, 6, 0, -4, -2, 2, 0, 2, 0, 2, -2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -2, 0, 0, 0, 0, -6, -6, -1, -3, -3, -3, 0, 0, 0, 2, -1, -1, 2, 2, 2, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 4, 4, -1, -2, -2, 0, 0, 1, 1, 1, 1, 2, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[98, 42, 14, -14, 14, 42, -6, 18, -2, -2, 6, 6, 14, 56, -7, 14, 8, -4, 2, -1, 0, 0, -14, 14, 0, -6, 0, 6, 0, -2, 0, -2, 2, 2, 0, 0, 0, 0, -7, 28, -2, 14, 0, -7, 0, 24, -14, -2, 8, 8, 6, -2, 8, 6, 1, 0, 0, 6, 0, -3, -6, 1, 0, -4, 2, 2, 0, 0, 0, -3, 2, -2, 0, -2, -2, 0, 0, 0, -2, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 7, 12, -1, 1, -3, 3, 4, 4, 2, 0, 0, 0, 0, 0, 0, -2, 2, 0, -2, 0, 1, 0, 2, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, -4, 4, -2, -2, -2, 1, 1, -1, 1, 1, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 4, -2, -2, -2, -2, 4, -2, -2, 0, 1, 0, 0, -1, -1, 0, 0, -2, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[98, -28, 0, -14, 14, 42, 4, -12, 0, -2, 0, 6, -7, 56, 14, 14, -4, 8, -1, 2, 14, 0, -14, 14, -2, 4, 6, -4, 0, 0, 0, -2, 0, 2, -2, 2, 0, 0, -7, 28, -2, -7, -7, 0, 0, -16, -14, 1, 8, 0, -3, 1, -4, -4, -2, 0, 1, -3, -4, 6, 4, 0, -3, 0, 2, 0, 0, 0, 0, 0, -1, 1, 0, 0, -2, 0, -1, 0, 1, 0, -2, 0, 1, 0, 0, 0, 0, 0, 0, 7, -8, -1, 1, -3, 3, 4, 0, 2, -7, 8, 1, -4, 0, -3, 1, -1, 2, 1, 0, -2, -1, -1, 1, 1, 0, 0, -2, 2, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, -4, -2, 1, 1, 4, -2, -2, -1, 1, 1, 4, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, -2, -2, 0, 0, -2, 1, 1, -2, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[98, 28, 0, -14, 14, 42, -4, 12, 0, -2, 0, 6, -7, 56, 14, 14, -4, 8, -1, 2, -14, 0, -14, 14, 2, -4, -6, 4, 0, 0, 0, -2, 0, 2, 2, -2, 0, 0, -7, 28, -2, -7, 7, 0, 0, 16, -14, 1, 8, 0, -3, 1, -4, 4, -2, 0, -1, -3, 4, 6, -4, 0, 3, 0, 2, 0, 0, 0, 0, 0, -1, 1, 0, 0, -2, 0, 1, 0, 1, 0, -2, 0, -1, 0, 0, 0, 0, 0, 0, -7, 8, 1, 1, -3, -3, 4, 0, -2, 7, -8, -1, 4, 0, 3, 1, -1, -2, 1, 0, -2, 1, -1, -1, -1, 0, 0, 2, 2, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, -4, -2, 1, 1, 4, -2, -2, -1, 1, 1, -4, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, -2, -2, 0, 0, -2, 1, 1, 2, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[98, -42, -14, -14, 14, 42, 6, -18, 2, -2, -6, 6, 14, 56, -7, 14, 8, -4, 2, -1, 0, 0, -14, 14, 0, 6, 0, -6, 0, 2, 0, -2, -2, 2, 0, 0, 0, 0, -7, 28, -2, 14, 0, 7, 0, -24, -14, -2, 8, -8, 6, -2, 8, -6, 1, 0, 0, 6, 0, -3, 6, -1, 0, 4, 2, -2, 0, 0, 0, 3, 2, -2, 0, 2, -2, 0, 0, 0, -2, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, -7, -12, 1, 1, -3, -3, 4, -4, -2, 0, 0, 0, 0, 0, 0, -2, 2, 0, -2, 0, 1, 0, 2, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, -4, 4, -2, -2, -2, 1, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, -4, -2, -2, 2, 2, 4, -2, -2, 0, -1, 0, 0, 1, 1, 0, 0, 2, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[105, -35, 21, -15, -7, 45, 5, -15, -3, 1, 9, -3, 21, 60, 0, 15, 12, 0, 3, 0, -7, -7, -15, 15, 1, 5, -3, -5, 1, -3, -3, 1, 3, -1, 1, -1, 1, -1, 0, 30, 0, -7, 7, 0, 0, -20, -15, -3, -4, 12, 9, 1, -4, -5, 0, 0, -1, -3, 4, 0, 5, 0, 3, 0, -1, 3, 0, 0, 0, 0, -1, -3, 0, -3, 1, 0, 1, 0, 1, 0, 0, 0, -1, 0, 7, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, -2, 6, 0, -7, -4, 1, -4, -4, -3, -3, 3, -1, 1, 0, 0, -1, -1, 1, -1, -1, 0, 1, 0, 1, 0, 0, -1, 1, 1, 0, 0, 0, -1, 3, 0, 0, 0, 0, -15, -15, 0, 6, -3, -3, 0, 0, 0, 0, 0, 0, -2, 0, 0, -2, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 5, 5, 0, 1, 1, -3, -3, -2, 1, 1, 2, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, -2, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[105, 35, -21, -15, -7, 45, -5, 15, 3, 1, -9, -3, 21, 60, 0, 15, 12, 0, 3, 0, 7, -7, -15, 15, -1, -5, 3, 5, 1, 3, -3, 1, -3, -1, -1, 1, 1, -1, 0, 30, 0, -7, -7, 0, 0, 20, -15, -3, -4, -12, 9, 1, -4, 5, 0, 0, 1, -3, -4, 0, -5, 0, -3, 0, -1, -3, 0, 0, 0, 0, -1, -3, 0, 3, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, 7, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, -2, -6, 0, 7, 4, -1, 4, -4, 3, -3, 3, 1, 1, 0, 0, 1, -1, -1, 1, -1, 0, -1, 0, -1, 0, 0, 1, -1, 1, 0, 0, 0, -1, 3, 0, 0, 0, 0, -15, -15, 0, 6, -3, -3, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, -5, -5, 0, 1, 1, 3, 3, -2, 1, 1, -2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1, 2, -1, -1, 1, 1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[120, 80, 0, 24, 40, 24, 16, 16, 0, 8, 0, 8, 60, 30, 0, -6, 15, 0, -3, 0, 40, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, -20, 20, 0, 6, 20, 6, 12, 10, 0, 12, -4, -5, -4, 0, 4, 4, -4, 5, 0, 4, 0, 4, 0, -2, 0, 3, 2, 0, 0, 1, 3, -1, 0, 2, 0, -1, 1, -1, 0, 0, 0, 1, 0, -20, -6, -6, 1, 1, -20, 0, -4, 4, 4, -4, 0, 0, 0, -20, 10, -4, -5, 0, -4, 0, 0, -2, 0, 2, 0, 1, 0, 0, 0, 0, -1, 2, 0, 0, 0, 0, 0, -1, 0, 0, -4, -4, -4, -4, -2, -2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -5, -3, -3, 0, 1, 0, -2, -2, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, -1, -1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[120, -80, 0, 24, 40, 24, -16, -16, 0, 8, 0, 8, 60, 30, 0, -6, 15, 0, -3, 0, -40, 0, 0, 0, -8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, -20, -20, 0, 6, -20, 6, 12, 10, 0, 12, -4, -5, 4, 0, -4, -4, -4, -5, 0, -4, 0, -4, 0, -2, 0, 3, 2, 0, 0, 1, 3, -1, 0, 2, 0, 1, -1, -1, 0, 0, 0, -1, 0, -20, -6, -6, 1, 1, 20, 0, 4, 4, 4, 4, 0, 0, 0, 20, -10, 4, 5, 0, 4, 0, 0, 2, 0, -2, 0, -1, 0, 0, 0, 0, 1, -2, 0, 0, 0, 0, 0, 1, 0, 0, 4, 4, -4, -4, -2, -2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -5, -3, -3, 0, 1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, -1, -1, 1, 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[126, -84, 0, -18, 42, 6, 12, -4, 0, -6, 0, 2, 63, 36, 0, 0, 18, 0, 0, 0, -42, 0, 6, -6, 6, -4, -2, 4, 0, 0, 0, 2, 0, -2, -2, 2, 0, 0, 21, 6, 1, -21, -21, 0, -12, -24, 0, -9, 12, 0, 3, 3, -6, 0, 0, 8, 3, -1, -6, 0, 0, 0, -1, 0, 0, 0, -6, -4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -21, 0, 0, 0, 0, 21, -4, -3, -3, 1, 1, 2, 0, 1, 21, -12, -3, 6, 0, 1, 3, -3, 0, -1, 4, 0, 0, 1, 1, -1, 0, -2, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 3, -1, 0, 0, 0, 0, 6, 6, 6, 3, 3, 3, 0, 0, 0, 0, 1, 1, -2, 1, 1, 0, -1, -1, -6, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -4, -4, 6, 2, 2, 0, 0, -1, -1, -1, -1, 0, -1, -1, 1, 1, -2, -2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[126, 84, 0, -18, 42, 6, -12, 4, 0, -6, 0, 2, 63, 36, 0, 0, 18, 0, 0, 0, 42, 0, 6, -6, -6, 4, 2, -4, 0, 0, 0, 2, 0, -2, 2, -2, 0, 0, 21, 6, 1, -21, 21, 0, -12, 24, 0, -9, 12, 0, 3, 3, -6, 0, 0, -8, -3, -1, 6, 0, 0, 0, 1, 0, 0, 0, -6, -4, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -21, 0, 0, 0, 0, -21, 4, 3, -3, 1, -1, 2, 0, -1, -21, 12, 3, -6, 0, -1, 3, -3, 0, -1, -4, 0, 0, 1, -1, 1, 0, 2, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 3, -1, 0, 0, 0, 0, 6, 6, 6, 3, 3, 3, 0, 0, 0, 0, 1, 1, 2, 1, -1, 0, 1, -1, -6, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 4, 4, -6, 2, 2, 0, 0, -1, -1, -1, 1, 0, 1, 1, -1, -1, -2, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |126,-84,0,-18,42,6,12,-4,0,-6,0,2,63,-18,0,0,-9,0,0,0,-42,0,6,-6,6,-4,-2,4,0,0,0,2,0,-2,-2,2,0,0,21,6,1,-21,-21,0,6,12,0,-9,-6,0,3,3,3,0,0,-4,3,-1,3,0,0,0,-1,0,0,0,3,2,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,-21,0,0,0,0,21,-4,-3,-3,1,1,2,0,1,21,6,-3,-3,0,1,3,-3,0,-1,-2,0,0,1,1,-1,0,1,0,0,1,0,0,-1,0,0,0,0,0,3,-1,0,0,0,0,6-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,-12+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,-3,3,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-2,1,1,0,-1,-1,3,0,0,0,0,0,0,0,-1,0,1,0,-4+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,8-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,-3,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,4-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-2+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |126,-84,0,-18,42,6,12,-4,0,-6,0,2,63,-18,0,0,-9,0,0,0,-42,0,6,-6,6,-4,-2,4,0,0,0,2,0,-2,-2,2,0,0,21,6,1,-21,-21,0,6,12,0,-9,-6,0,3,3,3,0,0,-4,3,-1,3,0,0,0,-1,0,0,0,3,2,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,-21,0,0,0,0,21,-4,-3,-3,1,1,2,0,1,21,6,-3,-3,0,1,3,-3,0,-1,-2,0,0,1,1,-1,0,1,0,0,1,0,0,-1,0,0,0,0,0,3,-1,0,0,0,0,-12+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,6-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,-3,3,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2,1,1,0,-1,-1,3,0,0,0,0,0,0,0,-1,0,1,0,8-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,-4+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,-3,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,-2+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,4-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |126,84,0,-18,42,6,-12,4,0,-6,0,2,63,-18,0,0,-9,0,0,0,42,0,6,-6,-6,4,2,-4,0,0,0,2,0,-2,2,-2,0,0,21,6,1,-21,21,0,6,-12,0,-9,-6,0,3,3,3,0,0,4,-3,-1,-3,0,0,0,1,0,0,0,3,2,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,-21,0,0,0,0,-21,4,3,-3,1,-1,2,0,-1,-21,-6,3,3,0,-1,3,-3,0,-1,2,0,0,1,-1,1,0,-1,0,0,-1,0,0,1,0,0,0,0,0,3,-1,0,0,0,0,6-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,-12+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,-3,3,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2,1,-1,0,1,-1,3,0,0,0,0,0,0,0,-1,0,1,0,4-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,-8+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,3,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,-1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |126,84,0,-18,42,6,-12,4,0,-6,0,2,63,-18,0,0,-9,0,0,0,42,0,6,-6,-6,4,2,-4,0,0,0,2,0,-2,2,-2,0,0,21,6,1,-21,21,0,6,-12,0,-9,-6,0,3,3,3,0,0,4,-3,-1,-3,0,0,0,1,0,0,0,3,2,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,-21,0,0,0,0,-21,4,3,-3,1,-1,2,0,-1,-21,-6,3,3,0,-1,3,-3,0,-1,2,0,0,1,-1,1,0,-1,0,0,-1,0,0,1,0,0,0,0,0,3,-1,0,0,0,0,-12+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,6-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,-3,3,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2,1,-1,0,1,-1,3,0,0,0,0,0,0,0,-1,0,1,0,-8+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,4-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,3,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[140, 0, 0, -20, -28, 60, 0, 0, 0, 4, 0, -12, 14, 80, 14, 20, 8, 8, 2, 2, 0, 0, -20, 20, 0, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 40, 0, 14, 0, 0, 0, 0, -20, -2, -16, 0, 6, -2, 8, 0, -2, 0, 0, 6, 0, 6, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, -2, 0, 0, 4, 0, 0, 0, -2, 0, -2, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, -2, 0, -2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, 0, 0, 0, 0, -20, -20, 0, 4, -2, -2, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 4, 4, 0, 0, 4, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[147, -7, 21, -21, 7, 63, 1, -3, -3, -1, 9, 3, -21, 84, 0, 21, -12, 0, -3, 0, 7, -7, -21, 21, -1, 1, 3, -1, 1, -3, -3, -1, 3, 1, -1, 1, 1, -1, 7, 42, 2, 7, -7, 0, 0, -4, -21, 3, 4, 12, -9, -1, 4, -1, 0, 0, 1, 3, -4, 0, 1, 0, -3, 0, 1, 3, 0, 0, 0, 0, 1, 3, 0, -3, -1, 0, -1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -7, -2, 1, -1, 3, -3, 2, 6, -2, 7, 4, -1, 4, -4, 3, 3, -3, 1, -1, 0, 0, 1, 1, -1, 1, -1, 0, -1, 0, -1, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -21, 4, -6, 3, 3, 0, 0, 0, 1, -1, -1, 2, -1, 1, -2, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -4, -1, -1, -3, -3, 2, -1, -1, -2, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[147, 7, -21, -21, 7, 63, -1, 3, 3, -1, -9, 3, -21, 84, 0, 21, -12, 0, -3, 0, -7, -7, -21, 21, 1, -1, -3, 1, 1, 3, -3, -1, -3, 1, 1, -1, 1, -1, 7, 42, 2, 7, 7, 0, 0, 4, -21, 3, 4, -12, -9, -1, 4, 1, 0, 0, -1, 3, 4, 0, -1, 0, 3, 0, 1, -3, 0, 0, 0, 0, 1, 3, 0, 3, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 7, 2, -1, -1, 3, 3, 2, -6, 2, -7, -4, 1, -4, -4, -3, 3, -3, -1, -1, 0, 0, -1, 1, 1, -1, -1, 0, 1, 0, 1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -21, 4, -6, 3, 3, 0, 0, 0, 1, -1, -1, -2, -1, -1, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 4, -1, -1, 3, 3, 2, -1, -1, 2, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[168, 112, 0, -24, 56, 24, -16, 16, 0, -8, 0, 8, 84, 6, 0, 6, 3, 0, 3, 0, 56, 0, 0, 0, -8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, -12, -2, -28, 28, 0, 6, 4, -6, -12, 2, 0, 12, 4, -1, 4, 0, 4, -4, -4, 1, 0, -4, 0, 4, 0, 2, 0, 3, 2, 0, 0, -1, -3, -1, 0, -2, 0, 1, 1, 1, 0, 0, 0, -1, 0, -28, 0, 0, 0, 0, -28, -8, 4, -4, 4, -4, -4, 0, 2, -28, 2, 4, -1, 0, -4, 0, 0, 2, 0, 2, 0, -1, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 6, 6, 1, -6, 3, 3, 0, 0, 0, 1, 1, 1, -4, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 4, 4, -1, 2, 2, 0, 0, 2, -1, -1, -2, -1, 1, 1, -1, -1, 1, -1, 0, 0, 0, 1, -1, 2, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 2, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[168, -112, 0, -24, 56, 24, 16, -16, 0, -8, 0, 8, 84, 6, 0, 6, 3, 0, 3, 0, -56, 0, 0, 0, 8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, -12, -2, -28, -28, 0, 6, -4, -6, -12, 2, 0, 12, 4, -1, -4, 0, -4, 4, -4, -1, 0, 4, 0, -4, 0, 2, 0, 3, 2, 0, 0, -1, -3, -1, 0, -2, 0, -1, -1, 1, 0, 0, 0, 1, 0, -28, 0, 0, 0, 0, 28, 8, -4, -4, 4, 4, -4, 0, -2, 28, -2, -4, 1, 0, 4, 0, 0, -2, 0, -2, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 6, 6, 1, -6, 3, 3, 0, 0, 0, 1, 1, 1, 4, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -4, -4, 1, 2, 2, 0, 0, 2, -1, -1, 2, 1, -1, -1, 1, 1, 1, 1, 0, 0, 0, -1, -1, 2, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -2, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[196, 84, 28, 84, 28, 28, 36, 12, 12, 12, 4, 4, 28, -14, -14, 28, -2, 1, 4, -2, 0, 0, 28, 0, 0, 12, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, -14, -14, 1, 28, 0, -14, -14, -6, 0, 12, -2, -2, 4, 12, -2, 12, -6, -6, 0, 4, 0, -2, 0, -6, 0, 1, 4, 4, -2, -2, -2, -2, 4, 0, -2, 0, 0, 1, 0, 0, 0, -2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 14, -6, 6, -6, -2, 2, -2, -2, -1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 1, -2, -2, -2, 1, 1, 1, -2, 1, 1, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -1, -2, -2, -2, -2, -2, -2, -2, 0, 2, 0, 0, -1, -1, 1, -1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[196, -56, 0, 84, 28, 28, -24, -8, 0, 12, 0, 4, -14, -14, 28, 28, 1, -2, -2, 4, 28, 0, 28, 0, 12, -8, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, -14, -14, 1, -14, -14, 0, -14, 4, 0, -6, -2, 0, -2, -6, 1, -8, 12, 4, -6, -2, 1, 4, 0, 0, -2, 0, 4, 0, 1, -2, 0, 0, -2, 0, 1, 0, 0, -2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 4, 6, -6, -2, 2, -2, 0, -1, -14, -2, -6, 1, 0, -2, -2, 0, 4, -2, -2, 4, -2, 0, -2, -2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 1, 1, 1, 1, -2, -2, -2, -2, 1, 1, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -1, -2, -2, 0, 0, 1, 1, 1, 1, 2, 1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[196, 56, 0, 84, 28, 28, 24, 8, 0, 12, 0, 4, -14, -14, 28, 28, 1, -2, -2, 4, -28, 0, 28, 0, -12, 8, -4, 0, 0, 0, 0, 4, 0, 0, -4, 0, 0, 0, -14, -14, 1, -14, 14, 0, -14, -4, 0, -6, -2, 0, -2, -6, 1, 8, 12, -4, 6, -2, -1, 4, 0, 0, 2, 0, 4, 0, 1, -2, 0, 0, -2, 0, 1, 0, 0, -2, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -4, -6, -6, -2, -2, -2, 0, 1, 14, 2, 6, -1, 0, 2, -2, 0, -4, -2, 2, 4, 2, 0, 2, 2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 1, 1, 1, 1, -2, -2, -2, -2, 1, 1, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 1, -2, -2, 0, 0, 1, 1, 1, -1, -2, -1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[196, -84, -28, 84, 28, 28, -36, -12, -12, 12, -4, 4, 28, -14, -14, 28, -2, 1, 4, -2, 0, 0, 28, 0, 0, -12, 0, 0, 0, -4, 0, 4, 0, 0, 0, 0, 0, 0, -14, -14, 1, 28, 0, 14, -14, 6, 0, 12, -2, 2, 4, 12, -2, -12, -6, 6, 0, 4, 0, -2, 0, 6, 0, -1, 4, -4, -2, -2, 2, 2, 4, 0, -2, 0, 0, 1, 0, 0, 0, 2, 0, -1, 0, 0, 0, 0, 0, 0, 0, -14, 6, -6, -6, -2, -2, -2, 2, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, -14, 1, -2, -2, -2, 1, 1, 1, -2, 1, 1, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 1, -2, -2, 2, 2, -2, -2, -2, 0, -2, 0, 0, 1, 1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[210, -140, 0, 18, 70, -30, -12, 20, 0, 6, 0, -10, 105, 30, 0, 12, 15, 0, 6, 0, -70, 0, -6, -6, -6, 4, 10, 4, 0, 0, 0, -2, 0, -2, 2, 2, 0, 0, 35, 0, 0, -35, -35, 0, 6, -20, 0, 9, 10, 0, -15, -3, -5, -8, 0, -4, -3, 5, -5, 0, 0, 0, 5, 0, 4, 0, 3, 2, 0, 0, -2, 0, -1, 0, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, -35, 0, 0, 0, 0, 35, 0, 3, 3, -5, -5, 0, 0, 0, 35, -10, 3, 5, 0, -5, -3, -3, -4, 1, -2, 0, 2, 1, -1, 1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, -3, 5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -1, -1, 0, -1, -1, -5, 0, 0, 0, -2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[210, 140, 0, 18, 70, -30, 12, -20, 0, 6, 0, -10, 105, 30, 0, 12, 15, 0, 6, 0, 70, 0, -6, -6, 6, -4, -10, -4, 0, 0, 0, -2, 0, -2, -2, -2, 0, 0, 35, 0, 0, -35, 35, 0, 6, 20, 0, 9, 10, 0, -15, -3, -5, 8, 0, 4, 3, 5, 5, 0, 0, 0, -5, 0, 4, 0, 3, 2, 0, 0, -2, 0, -1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, -35, 0, 0, 0, 0, -35, 0, -3, 3, -5, 5, 0, 0, 0, -35, 10, -3, -5, 0, 5, -3, -3, 4, 1, 2, 0, -2, 1, 1, -1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -3, 5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -1, 1, 0, 1, -1, -5, 0, 0, 0, -2, 0, 0, 0, 1, 0, 1, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[210, -70, 42, 90, -14, 30, -30, -10, 18, -6, 6, -2, 42, -15, 0, 30, -3, 0, 6, 0, -14, -14, 30, 0, -6, -10, -2, 0, -6, 6, -2, -2, 0, 0, -2, 0, -2, 0, 0, -15, 0, -14, 14, 0, -15, 5, 0, 18, 1, -3, 6, -6, 1, -10, 0, 5, 6, -2, -1, 0, 0, 0, 2, 0, -2, 6, -3, 1, -3, 0, -2, 0, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 1, -3, 0, -14, 1, -6, 1, 1, -2, 6, 0, -2, -2, 1, 0, -2, 0, -2, 2, -2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, -15, -15, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 5, 5, 0, 1, 1, -3, -3, 1, 1, 1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[210, 70, -42, 90, -14, 30, 30, 10, -18, -6, -6, -2, 42, -15, 0, 30, -3, 0, 6, 0, 14, -14, 30, 0, 6, 10, 2, 0, -6, -6, -2, -2, 0, 0, 2, 0, -2, 0, 0, -15, 0, -14, -14, 0, -15, -5, 0, 18, 1, 3, 6, -6, 1, 10, 0, -5, -6, -2, 1, 0, 0, 0, -2, 0, -2, -6, -3, 1, 3, 0, -2, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1, 3, 0, 14, -1, 6, -1, 1, 2, 6, 0, 2, -2, -1, 0, 2, 0, 2, -2, -2, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 2, 0, 0, 0, 0, -15, -15, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, -5, -5, 0, 1, 1, 3, 3, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[245, 35, 7, -35, -7, 105, -5, 15, -1, 1, 3, -3, -7, 140, -7, 35, -4, -4, -1, -1, -7, 7, -35, 35, 1, -5, -3, 5, -1, -1, 3, 1, 1, -1, 1, -1, -1, 1, 0, 70, 0, -7, -7, 7, 0, 20, -35, 1, -4, 4, -3, 1, -4, 5, 1, 0, 1, -3, -4, -3, -5, -1, -3, 4, -1, 1, 0, 0, 0, 3, -1, 1, 0, -1, 1, 0, -1, 0, 1, 1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, -2, 2, 0, -7, -4, 1, -4, 4, -3, 1, -1, -1, 1, 0, 1, -1, -1, 1, 1, 1, 0, 1, -1, -1, -1, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -35, -35, 0, -2, 1, 1, -2, 1, 1, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, 1, 1, -1, -1, -2, 1, 1, -2, 0, 1, 1, 0, 0, 0, 0, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[245, -35, -7, -35, -7, 105, 5, -15, 1, 1, -3, -3, -7, 140, -7, 35, -4, -4, -1, -1, 7, 7, -35, 35, -1, 5, 3, -5, -1, 1, 3, 1, -1, -1, -1, 1, -1, 1, 0, 70, 0, -7, 7, -7, 0, -20, -35, 1, -4, -4, -3, 1, -4, -5, 1, 0, -1, -3, 4, -3, 5, 1, 3, -4, -1, -1, 0, 0, 0, -3, -1, 1, 0, 1, 1, 0, 1, 0, 1, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, -2, -2, 0, 7, 4, -1, 4, 4, 3, 1, -1, 1, 1, 0, 1, 1, -1, -1, -1, 1, 0, -1, -1, 1, 1, 0, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -35, -35, 0, -2, 1, 1, -2, 1, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 1, 1, 1, 1, -2, 1, 1, 2, 0, -1, -1, 0, 0, 0, 0, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |270,180,0,-18,90,-18,-12,-12,0,-6,0,-6,135,0,0,0,0,0,0,0,90,0,6,6,-6,4,-6,4,0,0,0,2,0,2,2,2,0,0,45,0,0,-45,45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,-3,3,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-45,-6-6*K.1-6*K.1^2-6*K.1^-3,6*K.1+6*K.1^2+6*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-45,0,3,-3,-3,3,0,0,0,-45,0,3,0,0,3,3,3,0,-1,0,0,0,-1,-1,1,0,0,0,0,1,0,0,-1,0,0,0,-4-4*K.1-4*K.1^2-4*K.1^-3,4*K.1+4*K.1^2+4*K.1^-3,3,3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,1,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |270,180,0,-18,90,-18,-12,-12,0,-6,0,-6,135,0,0,0,0,0,0,0,90,0,6,6,-6,4,-6,4,0,0,0,2,0,2,2,2,0,0,45,0,0,-45,45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,-3,3,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-45,6*K.1+6*K.1^2+6*K.1^-3,-6-6*K.1-6*K.1^2-6*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-45,0,3,-3,-3,3,0,0,0,-45,0,3,0,0,3,3,3,0,-1,0,0,0,-1,-1,1,0,0,0,0,1,0,0,-1,0,0,0,4*K.1+4*K.1^2+4*K.1^-3,-4-4*K.1-4*K.1^2-4*K.1^-3,3,3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,1,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |270,-180,0,-18,90,-18,12,12,0,-6,0,-6,135,0,0,0,0,0,0,0,-90,0,6,6,6,-4,6,-4,0,0,0,2,0,2,-2,-2,0,0,45,0,0,-45,-45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,3,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-45,-6-6*K.1-6*K.1^2-6*K.1^-3,6*K.1+6*K.1^2+6*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,45,0,-3,-3,-3,-3,0,0,0,45,0,-3,0,0,-3,3,3,0,-1,0,0,0,-1,1,-1,0,0,0,0,-1,0,0,1,0,0,0,4+4*K.1+4*K.1^2+4*K.1^-3,-4*K.1-4*K.1^2-4*K.1^-3,3,3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |270,-180,0,-18,90,-18,12,12,0,-6,0,-6,135,0,0,0,0,0,0,0,-90,0,6,6,6,-4,6,-4,0,0,0,2,0,2,-2,-2,0,0,45,0,0,-45,-45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,3,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-45,6*K.1+6*K.1^2+6*K.1^-3,-6-6*K.1-6*K.1^2-6*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,45,0,-3,-3,-3,-3,0,0,0,45,0,-3,0,0,-3,3,3,0,-1,0,0,0,-1,1,-1,0,0,0,0,-1,0,0,1,0,0,0,-4*K.1-4*K.1^2-4*K.1^-3,4+4*K.1+4*K.1^2+4*K.1^-3,3,3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[280, 120, 40, 56, 40, 56, 24, 24, 8, 8, 8, 8, 40, 70, -20, -14, 10, -5, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, 0, 0, 40, 0, -20, 14, 30, 14, 8, 10, 10, 8, 8, 10, -6, -4, 6, 0, 8, 0, -4, 6, -4, 0, -5, -2, -2, 2, 2, 2, -4, -2, 2, 2, 2, 2, -1, 0, 0, 2, 1, -1, -1, 0, -1, 0, -14, -14, 0, 0, 20, 0, 4, -4, -4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 0, -2, -2, -2, -2, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 1, 1, -2, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[280, -80, 0, 56, 40, 56, -16, -16, 0, 8, 0, 8, -20, 70, 40, -14, -5, 10, 1, -2, 40, 0, 0, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, 0, 0, -20, -20, 0, 14, -20, 14, -4, 10, 0, -4, -4, -5, 4, 8, -4, -4, -4, -5, 8, -4, 0, -4, 0, -2, 0, -1, 2, 0, 0, 1, -1, -1, 0, 2, 2, 1, -1, -1, 0, 2, 0, -1, 0, 0, -14, -14, 0, 0, 20, 0, 4, -4, -4, 4, 0, 0, 0, -20, 10, -4, -5, 0, -4, 0, 0, -2, 0, 2, 0, 1, 0, 0, 0, 0, -1, 2, 0, 0, 0, 0, 0, -1, 0, 0, 4, 4, 0, 0, -2, -2, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[280, 80, 0, 56, 40, 56, 16, 16, 0, 8, 0, 8, -20, 70, 40, -14, -5, 10, 1, -2, -40, 0, 0, 0, -8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, 0, 0, -20, 20, 0, 14, 20, 14, -4, 10, 0, -4, -4, -5, -4, 8, 4, 4, -4, 5, 8, 4, 0, 4, 0, -2, 0, -1, 2, 0, 0, 1, -1, -1, 0, 2, 2, -1, 1, -1, 0, 2, 0, 1, 0, 0, -14, -14, 0, 0, -20, 0, -4, -4, -4, -4, 0, 0, 0, 20, -10, 4, 5, 0, 4, 0, 0, 2, 0, -2, 0, -1, 0, 0, 0, 0, 1, -2, 0, 0, 0, 0, 0, 1, 0, 0, -4, -4, 0, 0, -2, -2, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, 0, -2, 2, 2, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[280, 0, 0, 120, -56, 40, 0, 0, 0, -24, 0, -8, 28, -20, 28, 40, -2, -2, 4, 4, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, -20, 0, 28, 0, 0, -20, 0, 0, 12, 4, 0, 4, 12, -2, 0, 12, 0, 0, 4, 0, 4, 0, 0, 0, 0, -8, 0, -2, 4, 0, 0, 4, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -2, 0, 0, 0, 0, -20, -20, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[280, -120, -40, 56, 40, 56, -24, -24, -8, 8, -8, 8, 40, 70, -20, -14, 10, -5, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, 0, 0, 40, 0, 20, 14, -30, 14, 8, 10, -10, 8, 8, 10, 6, -4, -6, 0, 8, 0, -4, -6, 4, 0, 5, -2, 2, 2, 2, -2, 4, -2, 2, 2, -2, 2, -1, 0, 0, 2, -1, -1, 1, 0, 1, 0, -14, -14, 0, 0, -20, 0, -4, -4, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, -2, -2, 2, 2, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, -1, 0, 1, 1, -2, -2, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[294, -14, 42, 126, 14, 42, -6, -2, 18, 6, 6, 2, -42, -21, 0, 42, 3, 0, -6, 0, 14, -14, 42, 0, 6, -2, 2, 0, -6, 6, -2, 2, 0, 0, 2, 0, -2, 0, 14, -21, -1, 14, -14, 0, -21, 1, 0, -18, -1, -3, -6, 6, -1, -2, 0, 1, -6, 2, 1, 0, 0, 0, -2, 0, 2, 6, 3, -1, -3, 0, 2, 0, -1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14, 1, -6, 6, 2, -2, -1, -3, 1, 14, -1, 6, -1, 1, 2, -6, 0, 2, 2, -1, 0, 2, 0, 2, -2, -2, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -21, -1, 3, 3, 3, 0, 0, 0, 2, -1, -1, -1, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, -3, -3, -1, -1, -1, 1, -2, 1, 1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[294, -126, -42, -42, 42, 14, 18, -6, 6, -6, -2, 2, 42, 84, -21, 0, 12, -6, 0, 0, 0, 0, 14, -14, 0, -6, 0, 6, 0, -2, 0, 2, 2, -2, 0, 0, 0, 0, -21, 14, -1, 42, 0, 21, -28, -36, 0, -6, 12, -12, 2, -6, 12, 0, 3, 12, 0, 2, 0, -1, 0, -3, 0, 6, 0, 0, -4, -4, 4, 1, 0, 0, -4, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -21, -6, 3, 3, -1, -1, 2, -2, -1, 0, 0, 0, 0, 0, 0, 2, -2, 0, 2, 0, -1, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -6, 2, 2, 2, -1, -1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -6, 2, 2, -2, -2, 2, 2, 2, 0, 0, 0, 0, -1, -1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[294, 126, 42, -42, 42, 14, -18, 6, -6, -6, 2, 2, 42, 84, -21, 0, 12, -6, 0, 0, 0, 0, 14, -14, 0, 6, 0, -6, 0, 2, 0, 2, -2, -2, 0, 0, 0, 0, -21, 14, -1, 42, 0, -21, -28, 36, 0, -6, 12, 12, 2, -6, 12, 0, 3, -12, 0, 2, 0, -1, 0, 3, 0, -6, 0, 0, -4, -4, -4, -1, 0, 0, -4, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 21, 6, -3, 3, -1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 2, -2, 0, 2, 0, -1, 0, -2, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -6, 2, 2, 2, -1, -1, -1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 2, -2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[294, 14, -42, 126, 14, 42, 6, 2, -18, 6, -6, 2, -42, -21, 0, 42, 3, 0, -6, 0, -14, -14, 42, 0, -6, 2, -2, 0, -6, -6, -2, 2, 0, 0, -2, 0, -2, 0, 14, -21, -1, 14, 14, 0, -21, -1, 0, -18, -1, 3, -6, 6, -1, 2, 0, -1, 6, 2, -1, 0, 0, 0, 2, 0, 2, -6, 3, -1, 3, 0, 2, 0, -1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, -1, 6, 6, 2, 2, -1, 3, -1, -14, 1, -6, 1, 1, -2, -6, 0, -2, 2, 1, 0, -2, 0, -2, 2, -2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -21, -1, 3, 3, 3, 0, 0, 0, 2, -1, -1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 3, 3, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[294, -84, 0, -42, 42, 14, 12, -4, 0, -6, 0, 2, -21, 84, 42, 0, -6, 12, 0, 0, 42, 0, 14, -14, -6, -4, 2, 4, 0, 0, 0, 2, 0, -2, 2, -2, 0, 0, -21, 14, -1, -21, -21, 0, -28, -24, 0, 3, 12, 0, -1, 3, -6, 0, -6, 8, 3, -1, -6, 2, 0, 0, -1, 0, 0, 0, 2, -4, 0, 0, 0, 0, 2, 0, 0, -4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, -4, -3, 3, -1, 1, 2, 0, 1, -21, 12, 3, -6, 0, -1, -1, 1, 0, -1, -4, 2, 0, 1, -1, -1, 0, 2, 0, -2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -6, -1, -1, -1, 2, 2, 2, 0, -1, -1, 2, -1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 6, 2, 2, 0, 0, -1, -1, -1, -1, 0, -1, -1, 1, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[294, 84, 0, -42, 42, 14, -12, 4, 0, -6, 0, 2, -21, 84, 42, 0, -6, 12, 0, 0, -42, 0, 14, -14, 6, 4, -2, -4, 0, 0, 0, 2, 0, -2, -2, 2, 0, 0, -21, 14, -1, -21, 21, 0, -28, 24, 0, 3, 12, 0, -1, 3, -6, 0, -6, -8, -3, -1, 6, 2, 0, 0, 1, 0, 0, 0, 2, -4, 0, 0, 0, 0, 2, 0, 0, -4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, 4, 3, 3, -1, -1, 2, 0, -1, 21, -12, -3, 6, 0, 1, -1, 1, 0, -1, 4, 2, 0, 1, 1, 1, 0, -2, 0, -2, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -6, -1, -1, -1, 2, 2, 2, 0, -1, -1, -2, -1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -6, 2, 2, 0, 0, -1, -1, -1, 1, 0, 1, 1, -1, -1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,-126,-42,-42,42,14,18,-6,6,-6,-2,2,42,-42,-21,0,-6,3,0,0,0,0,14,-14,0,-6,0,6,0,-2,0,2,2,-2,0,0,0,0,-21,14,-1,42,0,21,14,18,0,-6,-6,6,2,-6,-6,0,3,-6,0,2,0,-1,0,-3,0,-3,0,0,2,2,-2,1,0,0,2,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,-21,-6,3,3,-1,-1,2,-2,-1,0,0,0,0,0,0,2,-2,0,2,0,-1,0,-2,0,0,0,0,0,1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,3,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-6+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,12-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,3,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,-2+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,4-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,-1,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,-126,-42,-42,42,14,18,-6,6,-6,-2,2,42,-42,-21,0,-6,3,0,0,0,0,14,-14,0,-6,0,6,0,-2,0,2,2,-2,0,0,0,0,-21,14,-1,42,0,21,14,18,0,-6,-6,6,2,-6,-6,0,3,-6,0,2,0,-1,0,-3,0,-3,0,0,2,2,-2,1,0,0,2,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,-21,-6,3,3,-1,-1,2,-2,-1,0,0,0,0,0,0,2,-2,0,2,0,-1,0,-2,0,0,0,0,0,1,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,3,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,12-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,-6+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,3,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,4-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-2+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,-1,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,126,42,-42,42,14,-18,6,-6,-6,2,2,42,-42,-21,0,-6,3,0,0,0,0,14,-14,0,6,0,-6,0,2,0,2,-2,-2,0,0,0,0,-21,14,-1,42,0,-21,14,-18,0,-6,-6,-6,2,-6,-6,0,3,6,0,2,0,-1,0,3,0,3,0,0,2,2,2,-1,0,0,2,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,21,6,-3,3,-1,1,2,2,1,0,0,0,0,0,0,2,-2,0,2,0,-1,0,-2,0,0,0,0,0,1,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,3,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,-1,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,6-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,-12+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,-3,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,1,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,126,42,-42,42,14,-18,6,-6,-6,2,2,42,-42,-21,0,-6,3,0,0,0,0,14,-14,0,6,0,-6,0,2,0,2,-2,-2,0,0,0,0,-21,14,-1,42,0,-21,14,-18,0,-6,-6,-6,2,-6,-6,0,3,6,0,2,0,-1,0,3,0,3,0,0,2,2,2,-1,0,0,2,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,21,6,-3,3,-1,1,2,2,1,0,0,0,0,0,0,2,-2,0,2,0,-1,0,-2,0,0,0,0,0,1,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,3,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,-1,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-12+12*K.1+6*K.1^2-6*K.1^3+12*K.1^4-6*K.1^5+6*K.1^7,6-12*K.1-6*K.1^2+6*K.1^3-12*K.1^4+6*K.1^5-6*K.1^7,-3,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,1,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,-84,0,-42,42,14,12,-4,0,-6,0,2,-21,-42,42,0,3,-6,0,0,42,0,14,-14,-6,-4,2,4,0,0,0,2,0,-2,2,-2,0,0,-21,14,-1,-21,-21,0,14,12,0,3,-6,0,-1,3,3,0,-6,-4,3,-1,3,2,0,0,-1,0,0,0,-1,2,0,0,0,0,-1,0,0,2,0,-1,0,0,0,0,0,0,0,0,0,0,0,21,-4,-3,3,-1,1,2,0,1,-21,-6,3,3,0,-1,-1,1,0,-1,2,2,0,1,-1,-1,0,-1,0,-2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,3,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2,-1,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,-4+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,8-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,-3,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,-84,0,-42,42,14,12,-4,0,-6,0,2,-21,-42,42,0,3,-6,0,0,42,0,14,-14,-6,-4,2,4,0,0,0,2,0,-2,2,-2,0,0,-21,14,-1,-21,-21,0,14,12,0,3,-6,0,-1,3,3,0,-6,-4,3,-1,3,2,0,0,-1,0,0,0,-1,2,0,0,0,0,-1,0,0,2,0,-1,0,0,0,0,0,0,0,0,0,0,0,21,-4,-3,3,-1,1,2,0,1,-21,-6,3,3,0,-1,-1,1,0,-1,2,2,0,1,-1,-1,0,-1,0,-2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,3,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2,-1,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,8-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,-4+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,-3,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,84,0,-42,42,14,-12,4,0,-6,0,2,-21,-42,42,0,3,-6,0,0,-42,0,14,-14,6,4,-2,-4,0,0,0,2,0,-2,-2,2,0,0,-21,14,-1,-21,21,0,14,-12,0,3,-6,0,-1,3,3,0,-6,4,-3,-1,-3,2,0,0,1,0,0,0,-1,2,0,0,0,0,-1,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,-21,4,3,3,-1,-1,2,0,-1,21,6,-3,-3,0,1,-1,1,0,-1,-2,2,0,1,1,1,0,1,0,-2,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,3,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,4-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,-8+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,3,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-2+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |294,84,0,-42,42,14,-12,4,0,-6,0,2,-21,-42,42,0,3,-6,0,0,-42,0,14,-14,6,4,-2,-4,0,0,0,2,0,-2,-2,2,0,0,-21,14,-1,-21,21,0,14,-12,0,3,-6,0,-1,3,3,0,-6,4,-3,-1,-3,2,0,0,1,0,0,0,-1,2,0,0,0,0,-1,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,-21,4,3,3,-1,-1,2,0,-1,21,6,-3,-3,0,1,-1,1,0,-1,-2,2,0,1,1,1,0,1,0,-2,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-28+28*K.1+14*K.1^2-14*K.1^3+28*K.1^4-14*K.1^5+14*K.1^7,14-28*K.1-14*K.1^2+14*K.1^3-28*K.1^4+14*K.1^5-14*K.1^7,3,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-2,-1,-1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,-8+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,4-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,3,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,4-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[300, -100, 60, 60, -20, 60, -20, -20, 12, -4, 12, -4, 60, 75, 0, -15, 15, 0, -3, 0, -20, -20, 0, 0, -4, 0, -4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, 20, 0, 15, -25, 15, 12, -5, 15, 12, -4, -5, 5, 0, -5, 4, -4, 5, 0, -5, 0, 4, 0, 1, -3, 3, -1, 3, 0, 1, 3, -1, 3, -1, 0, -1, 1, -1, 0, 0, 0, 1, 0, 20, -15, -15, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, -5, -4, -5, -5, -4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, -1, -1, 0, 0, 0, -1, 0, -1, -1, 0, 5, 5, 4, 4, 1, 1, -3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, -3, -3, 0, -1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[300, 100, -60, 60, -20, 60, 20, 20, -12, -4, -12, -4, 60, 75, 0, -15, 15, 0, -3, 0, 20, -20, 0, 0, 4, 0, 4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, -20, 0, 15, 25, 15, 12, -5, -15, 12, -4, -5, -5, 0, 5, -4, -4, -5, 0, 5, 0, -4, 0, 1, 3, 3, -1, -3, 0, 1, 3, -1, -3, -1, 0, 1, -1, -1, 0, 0, 0, -1, 0, 20, -15, -15, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 5, 4, 5, -5, 4, 0, 0, -1, 0, 1, 0, -1, 0, 0, 0, 1, 1, 1, 0, 0, 0, -1, 0, 1, -1, 0, -5, -5, 4, 4, 1, 1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, -3, -3, 0, -1, 0, -1, -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[315, -105, 63, -45, -21, 15, 15, -5, -9, 3, 3, -1, 63, 90, 0, 0, 18, 0, 0, 0, -21, -21, 15, -15, 3, -5, -1, 5, 3, 3, -1, -1, -3, 1, -1, 1, -1, 1, 0, 15, 0, -21, 21, 0, -30, -30, 0, -9, -6, 18, 3, 3, -6, 0, 0, 10, -3, -1, 6, 0, 0, 0, 1, 0, 0, 0, -6, 2, -6, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, -1, 3, 0, -21, -6, 3, -6, -6, -1, 3, -3, 0, -1, 2, 0, 0, 1, -1, 1, 0, 2, 0, 0, -1, 0, 2, 1, 0, 0, 0, 0, 0, -3, 1, 0, 0, 0, 0, 15, 15, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, -5, -5, 0, -1, -1, 3, 3, -1, -1, -1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[315, 105, -63, -45, -21, 15, -15, 5, 9, 3, -3, -1, 63, 90, 0, 0, 18, 0, 0, 0, 21, -21, 15, -15, -3, 5, 1, -5, 3, -3, -1, -1, 3, 1, 1, -1, -1, 1, 0, 15, 0, -21, -21, 0, -30, 30, 0, -9, -6, -18, 3, 3, -6, 0, 0, -10, 3, -1, -6, 0, 0, 0, -1, 0, 0, 0, -6, 2, 6, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, -1, -3, 0, 21, 6, -3, 6, -6, 1, 3, -3, 0, -1, -2, 0, 0, 1, 1, -1, 0, -2, 0, 0, 1, 0, 2, -1, 0, 0, 0, 0, 0, -3, 1, 0, 0, 0, 0, 15, 15, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 5, 5, 0, -1, -1, -3, -3, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |315,-105,63,-45,-21,15,15,-5,-9,3,3,-1,63,-45,0,0,-9,0,0,0,-21,-21,15,-15,3,-5,-1,5,3,3,-1,-1,-3,1,-1,1,-1,1,0,15,0,-21,21,0,15,15,0,-9,3,-9,3,3,3,0,0,-5,-3,-1,-3,0,0,0,1,0,0,0,3,-1,3,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,21,0,0,0,0,0,-5,0,0,0,0,-1,3,0,-21,3,3,3,3,-1,3,-3,0,-1,-1,0,0,1,-1,1,0,-1,0,0,-1,0,-1,1,0,0,0,0,0,-3,1,0,0,0,0,15-30*K.1-15*K.1^2+15*K.1^3-30*K.1^4+15*K.1^5-15*K.1^7,-30+30*K.1+15*K.1^2-15*K.1^3+30*K.1^4-15*K.1^5+15*K.1^7,0,3,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,0,0,0,0,0,0,-1,0,0,-1,0,0,-3,0,0,0,0,0,0,0,1,0,-1,0,-5+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,10-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |315,-105,63,-45,-21,15,15,-5,-9,3,3,-1,63,-45,0,0,-9,0,0,0,-21,-21,15,-15,3,-5,-1,5,3,3,-1,-1,-3,1,-1,1,-1,1,0,15,0,-21,21,0,15,15,0,-9,3,-9,3,3,3,0,0,-5,-3,-1,-3,0,0,0,1,0,0,0,3,-1,3,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,21,0,0,0,0,0,-5,0,0,0,0,-1,3,0,-21,3,3,3,3,-1,3,-3,0,-1,-1,0,0,1,-1,1,0,-1,0,0,-1,0,-1,1,0,0,0,0,0,-3,1,0,0,0,0,-30+30*K.1+15*K.1^2-15*K.1^3+30*K.1^4-15*K.1^5+15*K.1^7,15-30*K.1-15*K.1^2+15*K.1^3-30*K.1^4+15*K.1^5-15*K.1^7,0,3,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,0,0,0,0,0,0,-1,0,0,-1,0,0,-3,0,0,0,0,0,0,0,1,0,-1,0,10-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,-5+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |315,105,-63,-45,-21,15,-15,5,9,3,-3,-1,63,-45,0,0,-9,0,0,0,21,-21,15,-15,-3,5,1,-5,3,-3,-1,-1,3,1,1,-1,-1,1,0,15,0,-21,-21,0,15,-15,0,-9,3,9,3,3,3,0,0,5,3,-1,3,0,0,0,-1,0,0,0,3,-1,-3,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,21,0,0,0,0,0,5,0,0,0,0,-1,-3,0,21,-3,-3,-3,3,1,3,-3,0,-1,1,0,0,1,1,-1,0,1,0,0,1,0,-1,-1,0,0,0,0,0,-3,1,0,0,0,0,15-30*K.1-15*K.1^2+15*K.1^3-30*K.1^4+15*K.1^5-15*K.1^7,-30+30*K.1+15*K.1^2-15*K.1^3+30*K.1^4-15*K.1^5+15*K.1^7,0,3,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,0,0,0,0,0,0,1,0,0,-1,0,0,-3,0,0,0,0,0,0,0,1,0,-1,0,5-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,-10+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |315,105,-63,-45,-21,15,-15,5,9,3,-3,-1,63,-45,0,0,-9,0,0,0,21,-21,15,-15,-3,5,1,-5,3,-3,-1,-1,3,1,1,-1,-1,1,0,15,0,-21,-21,0,15,-15,0,-9,3,9,3,3,3,0,0,5,3,-1,3,0,0,0,-1,0,0,0,3,-1,-3,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,21,0,0,0,0,0,5,0,0,0,0,-1,-3,0,21,-3,-3,-3,3,1,3,-3,0,-1,1,0,0,1,1,-1,0,1,0,0,1,0,-1,-1,0,0,0,0,0,-3,1,0,0,0,0,-30+30*K.1+15*K.1^2-15*K.1^3+30*K.1^4-15*K.1^5+15*K.1^7,15-30*K.1-15*K.1^2+15*K.1^3-30*K.1^4+15*K.1^5-15*K.1^7,0,3,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,0,0,0,0,0,0,1,0,0,-1,0,0,-3,0,0,0,0,0,0,0,1,0,-1,0,-10+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,5-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[336, 224, 0, 48, 112, 0, 32, 0, 0, 16, 0, 0, 168, -24, 0, -6, -12, 0, -3, 0, 112, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 6, 1, -56, 56, 0, 0, -16, -6, 24, -8, 0, 0, -8, 4, -4, 0, 0, 8, 0, -4, 0, -4, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, -3, 0, 0, -2, 0, -1, 0, 1, 0, 0, 0, -1, 0, -56, 0, 0, 0, 0, -56, 4, -8, 8, 0, 0, 2, 0, -1, -56, -8, -8, 4, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 6, 6, -4, 3, 3, 3, 0, 0, 0, -1, 1, 1, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 0, 0, -1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[336, -224, 0, 48, 112, 0, -32, 0, 0, 16, 0, 0, 168, -24, 0, -6, -12, 0, -3, 0, -112, 0, 0, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 6, 1, -56, -56, 0, 0, 16, -6, 24, -8, 0, 0, -8, 4, 4, 0, 0, -8, 0, 4, 0, 4, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, -3, 0, 0, -2, 0, 1, 0, 1, 0, 0, 0, 1, 0, -56, 0, 0, 0, 0, 56, -4, 8, 8, 0, 0, 2, 0, 1, 56, 8, 8, -4, 0, 0, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 6, 6, -4, 3, 3, 3, 0, 0, 0, -1, 1, 1, -2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 2, 2, 0, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[384, 256, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 192, 24, 0, -12, 12, 0, -6, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, -6, -1, -64, 64, 0, 0, 16, 0, 0, 8, 0, 0, 0, -4, -8, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -64, 6, 6, -1, -1, -64, -4, 0, 0, 0, 0, -2, 0, 1, -64, 8, 0, -4, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 2, 2, 0, 0, -6, -6, 4, -3, -3, -3, 0, 0, 0, -2, -1, -1, -2, 0, 0, 0, 0, 0, -4, 3, 3, 0, 2, 0, 2, 2, 0, 0, 0, 0, -4, -4, -4, -2, -2, 0, 0, 1, 1, 1, -1, 2, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, 0, 1, 1, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, -1, -1, -1, -1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[384, -256, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, 192, 24, 0, -12, 12, 0, -6, 0, -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, -6, -1, -64, -64, 0, 0, -16, 0, 0, 8, 0, 0, 0, -4, 8, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, -64, 6, 6, -1, -1, 64, 4, 0, 0, 0, 0, -2, 0, -1, 64, -8, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 0, 0, -6, -6, 4, -3, -3, -3, 0, 0, 0, -2, -1, -1, 2, 0, 0, 0, 0, 0, -4, 3, 3, 0, 2, 0, -2, -2, 0, 0, 0, 0, 4, 4, 4, -2, -2, 0, 0, 1, 1, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1, 0, -1, -1, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[392, 168, 56, -56, 56, 56, -24, 24, -8, -8, 8, 8, 56, 14, -28, 14, 2, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -28, -28, 2, 56, 0, -28, 14, 6, -14, -8, 2, 2, 8, -8, 2, 6, 4, 6, 0, 8, 0, -4, -6, 4, 0, -1, 2, 2, 2, 2, 2, -4, 2, -2, 2, -2, -2, -1, 0, 0, -2, -1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 28, -12, -4, 4, -4, 4, -4, -4, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -1, -4, 2, 2, 2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 1, 2, 2, 2, 2, -4, 2, 2, 0, 1, 0, 0, 1, 1, -1, 1, 2, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[392, -168, -56, -56, 56, 56, 24, -24, 8, -8, -8, 8, 56, 14, -28, 14, 2, -1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -28, -28, 2, 56, 0, 28, 14, -6, -14, -8, 2, -2, 8, -8, 2, -6, 4, -6, 0, 8, 0, -4, 6, -4, 0, 1, 2, -2, 2, 2, -2, 4, 2, -2, 2, 2, -2, -1, 0, 0, -2, 1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -28, 12, 4, 4, -4, -4, -4, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -1, -4, 2, 2, 2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, -1, 2, 2, -2, -2, -4, 2, 2, 0, -1, 0, 0, -1, -1, -1, -1, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[392, -112, 0, -56, 56, 56, 16, -16, 0, -8, 0, 8, -28, 14, 56, 14, -1, 2, -1, 2, 56, 0, 0, 0, -8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -28, -28, 2, -28, -28, 0, 14, -4, -14, 4, 2, 0, -4, 4, -1, -4, -8, -4, 4, -4, -1, 8, 4, 0, -4, 0, 2, 0, -1, 2, 0, 0, -1, 1, -1, 0, -2, 2, -1, -1, 1, 0, -2, 0, 1, 0, 0, 0, 0, 0, 0, 28, 8, -4, 4, -4, 4, -4, 0, -2, -28, 2, 4, -1, 0, -4, 0, 0, 2, 0, 2, 0, -1, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -1, 2, -1, -1, -4, 2, 2, -1, -1, -1, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 1, 2, 2, 0, 0, 2, -1, -1, 2, 1, -1, -1, 1, 1, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[392, 112, 0, -56, 56, 56, -16, 16, 0, -8, 0, 8, -28, 14, 56, 14, -1, 2, -1, 2, -56, 0, 0, 0, 8, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -28, -28, 2, -28, 28, 0, 14, 4, -14, 4, 2, 0, -4, 4, -1, 4, -8, 4, -4, -4, 1, 8, -4, 0, 4, 0, 2, 0, -1, 2, 0, 0, -1, 1, -1, 0, -2, 2, 1, 1, 1, 0, -2, 0, -1, 0, 0, 0, 0, 0, 0, -28, -8, 4, 4, -4, -4, -4, 0, 2, 28, -2, -4, 1, 0, 4, 0, 0, -2, 0, -2, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, -1, 2, -1, -1, -4, 2, 2, -1, -1, -1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, -1, 2, 2, 0, 0, 2, -1, -1, -2, -1, 1, 1, -1, -1, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[400, 0, 0, 80, -80, 80, 0, 0, 0, -16, 0, -16, 40, 100, 40, -20, 10, 10, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 40, 0, 0, 20, 0, 20, 8, -20, 0, 8, 8, 10, 0, 8, 0, 0, 8, 0, 8, 0, 0, 0, 0, 4, 0, 2, -4, 0, 0, -2, 2, 2, 0, -4, 2, 0, 0, 2, 0, 2, 0, 0, 0, -20, -20, -20, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -2, -2, -2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[420, 280, 0, -12, 140, 12, -8, 8, 0, -4, 0, 4, 210, -30, 0, 6, -15, 0, 3, 0, 140, 0, -12, 0, -4, -8, 4, 0, 0, 0, 0, -4, 0, 0, -4, 0, 0, 0, 70, 0, 0, -70, 70, 0, -6, -20, 6, -6, -10, 0, 6, 2, 5, 4, 0, -4, -2, -2, -5, 0, 4, 0, 2, 0, 2, 0, -3, -2, 0, 0, -1, 3, 1, 0, 2, 0, 1, -1, -1, 0, 0, 0, 1, 0, -70, 0, 0, 0, 0, -70, 0, 2, -2, 2, -2, 0, 0, 0, -70, -10, 2, 5, 0, -2, -6, 0, 2, 2, -2, 0, -1, 0, 2, -2, 0, 1, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 2, 0, 0, 0, 5, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[420, -20, 60, 84, 20, 84, -4, -4, 12, 4, 12, 4, -60, 105, 0, -21, -15, 0, 3, 0, 20, -20, 0, 0, 4, 0, 4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 20, -20, 0, 21, -5, 21, -12, 5, 15, -12, 4, 5, 1, 0, -1, -4, 4, -5, 0, -1, 0, -4, 0, -1, -3, -3, 1, 3, 0, -1, -3, 1, 3, 1, 0, 1, -1, 1, 0, 0, 0, -1, 0, 0, -21, -21, 0, 0, -20, 0, -4, 4, 4, -4, 0, 0, 0, 20, 5, 4, 5, -5, 4, 0, 0, -1, 0, 1, 0, -1, 0, 0, 0, 1, 1, 1, 0, 0, 0, -1, 0, 1, -1, 0, 1, 1, 0, 0, -1, -1, -3, -3, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, -1, -1, 0, 1, 0, 1, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[420, -280, 0, -12, 140, 12, 8, -8, 0, -4, 0, 4, 210, -30, 0, 6, -15, 0, 3, 0, -140, 0, -12, 0, 4, 8, -4, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 70, 0, 0, -70, -70, 0, -6, 20, 6, -6, -10, 0, 6, 2, 5, -4, 0, 4, 2, -2, 5, 0, -4, 0, -2, 0, 2, 0, -3, -2, 0, 0, -1, 3, 1, 0, 2, 0, -1, 1, -1, 0, 0, 0, -1, 0, -70, 0, 0, 0, 0, 70, 0, -2, -2, 2, 2, 0, 0, 0, 70, 10, -2, -5, 0, 2, -6, 0, -2, 2, 2, 0, 1, 0, -2, 2, 0, -1, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, -2, 0, 0, 0, 5, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[420, -140, 84, -60, -28, 60, 20, -20, -12, 4, 12, -4, 84, 15, 0, 15, 3, 0, 3, 0, -28, -28, 0, 0, 4, 0, -4, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -30, 0, -28, 28, 0, 15, -5, -15, -12, -1, 3, 12, 4, -1, -5, 0, -5, -4, -4, 1, 0, 5, 0, 4, 0, -1, 3, 3, -1, 3, 0, -1, -3, -1, -3, 1, 0, 1, 1, 1, 0, 0, 0, -1, 0, 28, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 2, -6, 0, -28, -1, 4, -1, -1, -4, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, -1, 1, 0, 0, 0, -1, 0, 1, 1, 0, 0, 0, -4, 4, 0, 0, 0, 0, 15, 15, 0, -6, 3, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, -1, -1, 3, 3, 2, -1, -1, -2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[420, 140, -84, -60, -28, 60, -20, 20, 12, 4, -12, -4, 84, 15, 0, 15, 3, 0, 3, 0, 28, -28, 0, 0, -4, 0, 4, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -30, 0, -28, -28, 0, 15, 5, -15, -12, -1, -3, 12, 4, -1, 5, 0, 5, 4, -4, -1, 0, -5, 0, -4, 0, -1, -3, 3, -1, -3, 0, -1, -3, -1, 3, 1, 0, -1, -1, 1, 0, 0, 0, 1, 0, 28, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 2, 6, 0, 28, 1, -4, 1, -1, 4, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, -1, 1, 0, 0, 0, -4, 4, 0, 0, 0, 0, 15, 15, 0, -6, 3, 3, 0, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, -1, -1, -3, -3, 2, -1, -1, 2, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[420, 0, 0, -60, -84, 20, 0, 0, 0, 12, 0, -4, 42, 120, 42, 0, 12, 12, 0, 0, 0, 0, 20, -20, 0, 0, 0, 0, 0, 0, 0, -4, 0, 4, 0, 0, 0, 0, 0, 20, 0, 42, 0, 0, -40, 0, 0, -6, -24, 0, 2, -6, 12, 0, -6, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, -4, 8, 0, 0, 0, 0, -4, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 2, 0, 2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, -1, 0, 0, 0, 0, 20, 20, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[420, 20, -60, 84, 20, 84, 4, 4, -12, 4, -12, 4, -60, 105, 0, -21, -15, 0, 3, 0, -20, -20, 0, 0, -4, 0, -4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 20, 20, 0, 21, 5, 21, -12, 5, -15, -12, 4, 5, -1, 0, 1, 4, 4, 5, 0, 1, 0, 4, 0, -1, 3, -3, 1, -3, 0, -1, -3, 1, -3, 1, 0, -1, 1, 1, 0, 0, 0, 1, 0, 0, -21, -21, 0, 0, 20, 0, 4, 4, 4, 4, 0, 0, 0, -20, -5, -4, -5, -5, -4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, -1, -1, 0, 0, 0, -1, 0, -1, -1, 0, -1, -1, 0, 0, -1, -1, 3, 3, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |420,0,0,-60,-84,20,0,0,0,12,0,-4,42,-60,42,0,-6,-6,0,0,0,0,20,-20,0,0,0,0,0,0,0,-4,0,4,0,0,0,0,0,20,0,42,0,0,20,0,0,-6,12,0,2,-6,-6,0,-6,0,0,2,0,2,0,0,0,0,0,0,2,-4,0,0,0,0,2,0,0,2,0,0,0,0,0,0,0,0,-21,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,2,-2,0,2,0,2,0,-2,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,3,-1,0,0,0,0,20-40*K.1-20*K.1^2+20*K.1^3-40*K.1^4+20*K.1^5-20*K.1^7,-40+40*K.1+20*K.1^2-20*K.1^3+40*K.1^4-20*K.1^5+20*K.1^7,0,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,-4+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,8-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,0,0,2,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |420,0,0,-60,-84,20,0,0,0,12,0,-4,42,-60,42,0,-6,-6,0,0,0,0,20,-20,0,0,0,0,0,0,0,-4,0,4,0,0,0,0,0,20,0,42,0,0,20,0,0,-6,12,0,2,-6,-6,0,-6,0,0,2,0,2,0,0,0,0,0,0,2,-4,0,0,0,0,2,0,0,2,0,0,0,0,0,0,0,0,-21,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,2,-2,0,2,0,2,0,-2,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,3,-1,0,0,0,0,-40+40*K.1+20*K.1^2-20*K.1^3+40*K.1^4-20*K.1^5+20*K.1^7,20-40*K.1-20*K.1^2+20*K.1^3-40*K.1^4+20*K.1^5-20*K.1^7,0,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,8-8*K.1-4*K.1^2+4*K.1^3-8*K.1^4+4*K.1^5-4*K.1^7,-4+8*K.1+4*K.1^2-4*K.1^3+8*K.1^4-4*K.1^5+4*K.1^7,0,0,2,-4+4*K.1+2*K.1^2-2*K.1^3+4*K.1^4-2*K.1^5+2*K.1^7,2-4*K.1-2*K.1^2+2*K.1^3-4*K.1^4+2*K.1^5-2*K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[441, -21, 63, -63, 21, 21, 3, -1, -9, -3, 3, 1, -63, 126, 0, 0, -18, 0, 0, 0, 21, -21, 21, -21, -3, -1, 1, 1, 3, 3, -1, 1, -3, -1, 1, -1, -1, 1, 21, 21, 1, 21, -21, 0, -42, -6, 0, 9, 6, 18, -3, -3, 6, 0, 0, 2, 3, 1, -6, 0, 0, 0, -1, 0, 0, 0, 6, -2, -6, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -21, -1, 3, -3, 1, -1, 1, 3, -1, 21, 6, -3, 6, -6, 1, -3, 3, 0, 1, -2, 0, 0, -1, 1, -1, 0, -2, 0, 0, 1, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 6, -3, -3, -3, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -6, 1, 1, 3, 3, 1, 1, 1, -1, 0, -1, -1, -1, -1, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[441, 21, -63, -63, 21, 21, -3, 1, 9, -3, -3, 1, -63, 126, 0, 0, -18, 0, 0, 0, -21, -21, 21, -21, 3, 1, -1, -1, 3, -3, -1, 1, 3, -1, -1, 1, -1, 1, 21, 21, 1, 21, 21, 0, -42, 6, 0, 9, 6, -18, -3, -3, 6, 0, 0, -2, -3, 1, 6, 0, 0, 0, 1, 0, 0, 0, 6, -2, 6, 0, 0, 0, -2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 1, -3, -3, 1, 1, 1, -3, 1, -21, -6, 3, -6, -6, -1, -3, 3, 0, 1, 2, 0, 0, -1, -1, 1, 0, 2, 0, 0, -1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 6, -3, -3, -3, 0, 0, 0, 0, 1, 1, -1, 1, 1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 1, 1, -3, -3, 1, 1, 1, 1, 0, 1, 1, 1, 1, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |441,-21,63,-63,21,21,3,-1,-9,-3,3,1,-63,-63,0,0,9,0,0,0,21,-21,21,-21,-3,-1,1,1,3,3,-1,1,-3,-1,1,-1,-1,1,21,21,1,21,-21,0,21,3,0,9,-3,-9,-3,-3,-3,0,0,-1,3,1,3,0,0,0,-1,0,0,0,-3,1,3,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-21,-1,3,-3,1,-1,1,3,-1,21,-3,-3,-3,3,1,-3,3,0,1,1,0,0,-1,1,-1,0,1,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,21-42*K.1-21*K.1^2+21*K.1^3-42*K.1^4+21*K.1^5-21*K.1^7,-42+42*K.1+21*K.1^2-21*K.1^3+42*K.1^4-21*K.1^5+21*K.1^7,-3,-3,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,3,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |441,-21,63,-63,21,21,3,-1,-9,-3,3,1,-63,-63,0,0,9,0,0,0,21,-21,21,-21,-3,-1,1,1,3,3,-1,1,-3,-1,1,-1,-1,1,21,21,1,21,-21,0,21,3,0,9,-3,-9,-3,-3,-3,0,0,-1,3,1,3,0,0,0,-1,0,0,0,-3,1,3,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-21,-1,3,-3,1,-1,1,3,-1,21,-3,-3,-3,3,1,-3,3,0,1,1,0,0,-1,1,-1,0,1,0,0,1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,-42+42*K.1+21*K.1^2-21*K.1^3+42*K.1^4-21*K.1^5+21*K.1^7,21-42*K.1-21*K.1^2+21*K.1^3-42*K.1^4+21*K.1^5-21*K.1^7,-3,-3,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,3,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-6+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,3-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |441,21,-63,-63,21,21,-3,1,9,-3,-3,1,-63,-63,0,0,9,0,0,0,-21,-21,21,-21,3,1,-1,-1,3,-3,-1,1,3,-1,-1,1,-1,1,21,21,1,21,21,0,21,-3,0,9,-3,9,-3,-3,-3,0,0,1,-3,1,-3,0,0,0,1,0,0,0,-3,1,-3,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,21,1,-3,-3,1,1,1,-3,1,-21,3,3,3,3,-1,-3,3,0,1,-1,0,0,-1,-1,1,0,-1,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,21-42*K.1-21*K.1^2+21*K.1^3-42*K.1^4+21*K.1^5-21*K.1^7,-42+42*K.1+21*K.1^2-21*K.1^3+42*K.1^4-21*K.1^5+21*K.1^7,-3,-3,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,1,1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-3,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |441,21,-63,-63,21,21,-3,1,9,-3,-3,1,-63,-63,0,0,9,0,0,0,-21,-21,21,-21,3,1,-1,-1,3,-3,-1,1,3,-1,-1,1,-1,1,21,21,1,21,21,0,21,-3,0,9,-3,9,-3,-3,-3,0,0,1,-3,1,-3,0,0,0,1,0,0,0,-3,1,-3,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,21,1,-3,-3,1,1,1,-3,1,-21,3,3,3,3,-1,-3,3,0,1,-1,0,0,-1,-1,1,0,-1,0,0,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,-42+42*K.1+21*K.1^2-21*K.1^3+42*K.1^4-21*K.1^5+21*K.1^7,21-42*K.1-21*K.1^2+21*K.1^3-42*K.1^4+21*K.1^5-21*K.1^7,-3,-3,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,1,1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-3,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,6-6*K.1-3*K.1^2+3*K.1^3-6*K.1^4+3*K.1^5-3*K.1^7,-3+6*K.1+3*K.1^2-3*K.1^3+6*K.1^4-3*K.1^5+3*K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[490, 70, 14, 210, -14, 70, 30, 10, 6, -6, 2, -2, -14, -35, -14, 70, 1, 1, -2, -2, -14, 14, 70, 0, -6, 10, -2, 0, 6, 2, 2, -2, 0, 0, -2, 0, 2, 0, 0, -35, 0, -14, -14, 14, -35, -5, 0, -6, 1, -1, -2, -6, 1, 10, -6, -5, -6, -2, 1, -2, 0, 6, -2, -1, -2, 2, 1, 1, -1, 2, -2, 0, 1, 0, 0, 1, -2, 1, 0, 2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1, -1, 0, -14, 1, -6, 1, -1, -2, -2, 0, -2, -2, 1, -2, -2, 0, -2, -2, 2, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, -35, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, 1, 1, -1, -1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[490, -210, -70, 42, 70, -70, -18, 30, -6, 6, 10, -10, 70, 70, -35, 28, 10, -5, 4, -2, 0, 0, -14, -14, 0, 6, 0, 6, 0, 2, 0, -2, 2, -2, 0, 0, 0, 0, -35, 0, 0, 70, 0, 35, 14, -30, 0, 6, 10, -10, -10, 6, 10, -12, -3, -6, 0, -10, 0, 5, 0, 3, 0, 5, 4, -4, 2, 2, -2, -5, 4, 0, 2, 0, 0, -1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, -35, 0, -3, -3, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, -2, 0, 1, 0, -2, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[490, 210, 70, 42, 70, -70, 18, -30, 6, 6, -10, -10, 70, 70, -35, 28, 10, -5, 4, -2, 0, 0, -14, -14, 0, -6, 0, -6, 0, -2, 0, -2, -2, -2, 0, 0, 0, 0, -35, 0, 0, 70, 0, -35, 14, 30, 0, 6, 10, 10, -10, 6, 10, 12, -3, 6, 0, -10, 0, 5, 0, -3, 0, -5, 4, 4, 2, 2, 2, 5, 4, 0, 2, 0, 0, -1, 0, 0, 0, -2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 35, 0, 3, -3, 5, -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, -2, 0, 1, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[490, -70, -14, 210, -14, 70, -30, -10, -6, -6, -2, -2, -14, -35, -14, 70, 1, 1, -2, -2, 14, 14, 70, 0, 6, -10, 2, 0, 6, -2, 2, -2, 0, 0, 2, 0, 2, 0, 0, -35, 0, -14, 14, -14, -35, 5, 0, -6, 1, 1, -2, -6, 1, -10, -6, 5, 6, -2, -1, -2, 0, -6, 2, 1, -2, -2, 1, 1, 1, -2, -2, 0, 1, 0, 0, 1, 2, -1, 0, -2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 14, -1, 6, -1, -1, 2, -2, 0, 2, -2, -1, -2, 2, 0, 2, 2, 2, -1, 0, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, -35, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 1, 1, 1, 1, 1, 1, 1, -1, 0, -1, -1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[490, -140, 0, 42, 70, -70, -12, 20, 0, 6, 0, -10, -35, 70, 70, 28, -5, 10, -2, 4, 70, 0, -14, -14, 6, 4, -10, 4, 0, 0, 0, -2, 0, -2, -2, -2, 0, 0, -35, 0, 0, -35, -35, 0, 14, -20, 0, -3, 10, 0, 5, -3, -5, -8, 6, -4, -3, 5, -5, -10, 0, 0, 5, 0, 4, 0, -1, 2, 0, 0, -2, 0, -1, 0, 0, 2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 3, -3, 5, -5, 0, 0, 0, -35, 10, -3, -5, 0, 5, 1, 1, 4, 1, 2, -2, -2, 1, 1, 1, 0, -1, 0, -2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[490, 140, 0, 42, 70, -70, 12, -20, 0, 6, 0, -10, -35, 70, 70, 28, -5, 10, -2, 4, -70, 0, -14, -14, -6, -4, 10, -4, 0, 0, 0, -2, 0, -2, 2, 2, 0, 0, -35, 0, 0, -35, 35, 0, 14, 20, 0, -3, 10, 0, 5, -3, -5, 8, 6, 4, 3, 5, 5, -10, 0, 0, -5, 0, 4, 0, -1, 2, 0, 0, -2, 0, -1, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, 0, -3, -3, 5, 5, 0, 0, 0, 35, -10, 3, 5, 0, -5, 1, 1, -4, 1, -2, -2, 2, 1, -1, -1, 0, 1, 0, -2, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[525, -175, 105, 45, -35, -75, -15, 25, 9, -3, -15, 5, 105, 75, 0, 30, 15, 0, 6, 0, -35, -35, -15, -15, -3, 5, 5, 5, -3, -3, 5, 1, -3, 1, 1, 1, 1, 1, 0, 0, 0, -35, 35, 0, 15, -25, 0, 9, -5, 15, -15, -3, -5, -10, 0, -5, 3, 5, 5, 0, 0, 0, -5, 0, -2, 6, 3, -1, 3, 0, -2, 0, -1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, -5, -3, -5, -5, 5, -3, -3, -2, 1, -1, 0, -2, 1, 1, -1, -2, -1, 0, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 3, -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[525, 175, -105, 45, -35, -75, 15, -25, -9, -3, 15, 5, 105, 75, 0, 30, 15, 0, 6, 0, 35, -35, -15, -15, 3, -5, -5, -5, -3, 3, 5, 1, 3, 1, -1, -1, 1, 1, 0, 0, 0, -35, -35, 0, 15, 25, 0, 9, -5, -15, -15, -3, -5, 10, 0, 5, -3, 5, -5, 0, 0, 0, 5, 0, -2, -6, 3, -1, -3, 0, -2, 0, -1, 0, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 5, 3, 5, -5, -5, -3, -3, 2, 1, 1, 0, 2, 1, -1, 1, -2, 1, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 3, -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[560, 0, 0, -80, -112, 80, 0, 0, 0, 16, 0, -16, 56, 20, 56, 20, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -40, 0, 56, 0, 0, 20, 0, -20, -8, -4, 0, 8, -8, 2, 0, -8, 0, 0, 8, 0, 8, 0, 0, 0, 0, -4, 0, 2, -4, 0, 0, 2, -2, 2, 0, 4, 2, 0, 0, -2, 0, -2, 0, 0, 0, -28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 0, 0, 0, 0, 20, 20, 0, -4, 2, 2, -4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, -4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[588, -28, 84, -84, 28, 84, 4, -4, -12, -4, 12, 4, -84, 21, 0, 21, -3, 0, -3, 0, 28, -28, 0, 0, -4, 0, 4, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 28, -42, -2, 28, -28, 0, 21, -1, -21, 12, 1, 3, -12, -4, 1, -1, 0, -1, 4, 4, -1, 0, 1, 0, -4, 0, 1, 3, -3, 1, 3, 0, 1, 3, 1, -3, -1, 0, -1, -1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -28, 2, 4, -4, 4, -4, -2, -6, 2, 28, 1, -4, 1, -1, 4, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 1, 6, -3, -3, 0, 0, 0, 1, 1, 1, -2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 1, 1, 3, 3, -2, 1, 1, 2, -1, -1, -1, -1, -1, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[588, 28, -84, -84, 28, 84, -4, 4, 12, -4, -12, 4, -84, 21, 0, 21, -3, 0, -3, 0, -28, -28, 0, 0, 4, 0, -4, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 28, -42, -2, 28, 28, 0, 21, 1, -21, 12, 1, -3, -12, -4, 1, 1, 0, 1, -4, 4, 1, 0, -1, 0, 4, 0, 1, -3, -3, 1, -3, 0, 1, 3, 1, 3, -1, 0, 1, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 28, -2, -4, -4, 4, 4, -2, 6, -2, -28, -1, 4, -1, -1, -4, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, -1, 1, 0, 0, 0, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 1, 6, -3, -3, 0, 0, 0, 1, 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -3, -3, -2, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,270,90,-42,90,-42,-18,-18,-6,-6,-6,-6,90,0,-45,0,0,0,0,0,0,0,14,14,0,6,0,6,0,2,0,2,2,2,0,0,0,0,-45,0,0,90,0,-45,0,0,0,-6,0,0,-6,-6,0,0,3,0,0,-6,0,3,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14-14*K.1-14*K.1^2-14*K.1^-3,14*K.1+14*K.1^2+14*K.1^-3,0,0,45,0,-3,3,3,-3,0,0,0,0,0,0,0,0,0,2,2,0,2,0,-1,0,2,0,0,0,0,0,-1,0,-1,0,0,0,0,-1,-6-6*K.1-6*K.1^2-6*K.1^-3,6*K.1+6*K.1^2+6*K.1^-3,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-1*K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,270,90,-42,90,-42,-18,-18,-6,-6,-6,-6,90,0,-45,0,0,0,0,0,0,0,14,14,0,6,0,6,0,2,0,2,2,2,0,0,0,0,-45,0,0,90,0,-45,0,0,0,-6,0,0,-6,-6,0,0,3,0,0,-6,0,3,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14*K.1+14*K.1^2+14*K.1^-3,-14-14*K.1-14*K.1^2-14*K.1^-3,0,0,45,0,-3,3,3,-3,0,0,0,0,0,0,0,0,0,2,2,0,2,0,-1,0,2,0,0,0,0,0,-1,0,-1,0,0,0,0,-1,6*K.1+6*K.1^2+6*K.1^-3,-6-6*K.1-6*K.1^2-6*K.1^-3,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,-270,-90,-42,90,-42,18,18,6,-6,6,-6,90,0,-45,0,0,0,0,0,0,0,14,14,0,-6,0,-6,0,-2,0,2,-2,2,0,0,0,0,-45,0,0,90,0,45,0,0,0,-6,0,0,-6,-6,0,0,3,0,0,-6,0,3,0,-3,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14-14*K.1-14*K.1^2-14*K.1^-3,14*K.1+14*K.1^2+14*K.1^-3,0,0,-45,0,3,3,3,3,0,0,0,0,0,0,0,0,0,2,2,0,2,0,-1,0,2,0,0,0,0,0,-1,0,1,0,0,0,0,1,6+6*K.1+6*K.1^2+6*K.1^-3,-6*K.1-6*K.1^2-6*K.1^-3,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,-1*K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,-270,-90,-42,90,-42,18,18,6,-6,6,-6,90,0,-45,0,0,0,0,0,0,0,14,14,0,-6,0,-6,0,-2,0,2,-2,2,0,0,0,0,-45,0,0,90,0,45,0,0,0,-6,0,0,-6,-6,0,0,3,0,0,-6,0,3,0,-3,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14*K.1+14*K.1^2+14*K.1^-3,-14-14*K.1-14*K.1^2-14*K.1^-3,0,0,-45,0,3,3,3,3,0,0,0,0,0,0,0,0,0,2,2,0,2,0,-1,0,2,0,0,0,0,0,-1,0,1,0,0,0,0,1,-6*K.1-6*K.1^2-6*K.1^-3,6+6*K.1+6*K.1^2+6*K.1^-3,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,-180,0,-42,90,-42,12,12,0,-6,0,-6,-45,0,90,0,0,0,0,0,90,0,14,14,-6,-4,-6,-4,0,0,0,2,0,2,2,2,0,0,-45,0,0,-45,-45,0,0,0,0,3,0,0,3,3,0,0,-6,0,3,3,0,-6,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14-14*K.1-14*K.1^2-14*K.1^-3,14*K.1+14*K.1^2+14*K.1^-3,0,0,45,0,-3,3,3,-3,0,0,0,-45,0,3,0,0,3,-1,-1,0,-1,0,2,0,-1,-1,-1,0,0,0,2,-1,0,0,-1,0,0,0,4+4*K.1+4*K.1^2+4*K.1^-3,-4*K.1-4*K.1^2-4*K.1^-3,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,-2-2*K.1-2*K.1^2-2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,-180,0,-42,90,-42,12,12,0,-6,0,-6,-45,0,90,0,0,0,0,0,90,0,14,14,-6,-4,-6,-4,0,0,0,2,0,2,2,2,0,0,-45,0,0,-45,-45,0,0,0,0,3,0,0,3,3,0,0,-6,0,3,3,0,-6,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14*K.1+14*K.1^2+14*K.1^-3,-14-14*K.1-14*K.1^2-14*K.1^-3,0,0,45,0,-3,3,3,-3,0,0,0,-45,0,3,0,0,3,-1,-1,0,-1,0,2,0,-1,-1,-1,0,0,0,2,-1,0,0,-1,0,0,0,-4*K.1-4*K.1^2-4*K.1^-3,4+4*K.1+4*K.1^2+4*K.1^-3,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,2*K.1+2*K.1^2+2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,180,0,-42,90,-42,-12,-12,0,-6,0,-6,-45,0,90,0,0,0,0,0,-90,0,14,14,6,4,6,4,0,0,0,2,0,2,-2,-2,0,0,-45,0,0,-45,45,0,0,0,0,3,0,0,3,3,0,0,-6,0,-3,3,0,-6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14-14*K.1-14*K.1^2-14*K.1^-3,14*K.1+14*K.1^2+14*K.1^-3,0,0,-45,0,3,3,3,3,0,0,0,45,0,-3,0,0,-3,-1,-1,0,-1,0,2,0,-1,1,1,0,0,0,2,1,0,0,1,0,0,0,-4-4*K.1-4*K.1^2-4*K.1^-3,4*K.1+4*K.1^2+4*K.1^-3,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |630,180,0,-42,90,-42,-12,-12,0,-6,0,-6,-45,0,90,0,0,0,0,0,-90,0,14,14,6,4,6,4,0,0,0,2,0,2,-2,-2,0,0,-45,0,0,-45,45,0,0,0,0,3,0,0,3,3,0,0,-6,0,-3,3,0,-6,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14*K.1+14*K.1^2+14*K.1^-3,-14-14*K.1-14*K.1^2-14*K.1^-3,0,0,-45,0,3,3,3,3,0,0,0,45,0,-3,0,0,-3,-1,-1,0,-1,0,2,0,-1,1,1,0,0,0,2,1,0,0,1,0,0,0,4*K.1+4*K.1^2+4*K.1^-3,-4-4*K.1-4*K.1^2-4*K.1^-3,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,-1,-1,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,2*K.1+2*K.1^2+2*K.1^-3,-2*K.1-2*K.1^2-2*K.1^-3,2+2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |675,-225,135,-45,-45,-45,15,15,-9,3,-9,3,135,0,0,0,0,0,0,0,-45,-45,15,15,3,-5,3,-5,3,3,3,-1,3,-1,-1,-1,-1,-1,0,0,0,-45,45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,-3,3,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-15-15*K.1-15*K.1^2-15*K.1^-3,15*K.1+15*K.1^2+15*K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,-45,0,3,0,0,3,3,3,0,-1,0,0,0,-1,-1,1,0,0,0,0,1,0,0,-1,0,0,0,5+5*K.1+5*K.1^2+5*K.1^-3,-5*K.1-5*K.1^2-5*K.1^-3,-3,-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1,-1*K.1-K.1^2-K.1^-3,1,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |675,-225,135,-45,-45,-45,15,15,-9,3,-9,3,135,0,0,0,0,0,0,0,-45,-45,15,15,3,-5,3,-5,3,3,3,-1,3,-1,-1,-1,-1,-1,0,0,0,-45,45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,-3,3,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,15*K.1+15*K.1^2+15*K.1^-3,-15-15*K.1-15*K.1^2-15*K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,-45,0,3,0,0,3,3,3,0,-1,0,0,0,-1,-1,1,0,0,0,0,1,0,0,-1,0,0,0,-5*K.1-5*K.1^2-5*K.1^-3,5+5*K.1+5*K.1^2+5*K.1^-3,-3,-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1,1+K.1+K.1^2+K.1^-3,1,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |675,225,-135,-45,-45,-45,-15,-15,9,3,9,3,135,0,0,0,0,0,0,0,45,-45,15,15,-3,5,-3,5,3,-3,3,-1,-3,-1,1,1,-1,-1,0,0,0,-45,-45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,3,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,-15-15*K.1-15*K.1^2-15*K.1^-3,15*K.1+15*K.1^2+15*K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,45,0,-3,0,0,-3,3,3,0,-1,0,0,0,-1,1,-1,0,0,0,0,-1,0,0,1,0,0,0,-5-5*K.1-5*K.1^2-5*K.1^-3,5*K.1+5*K.1^2+5*K.1^-3,-3,-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1,-1*K.1-K.1^2-K.1^-3,1,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |675,225,-135,-45,-45,-45,-15,-15,9,3,9,3,135,0,0,0,0,0,0,0,45,-45,15,15,-3,5,-3,5,3,-3,3,-1,-3,-1,1,1,-1,-1,0,0,0,-45,-45,0,0,0,0,-9,0,0,-9,3,0,0,0,0,3,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,15*K.1+15*K.1^2+15*K.1^-3,-15-15*K.1-15*K.1^2-15*K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,45,0,-3,0,0,-3,3,3,0,-1,0,0,0,-1,1,-1,0,0,0,0,-1,0,0,1,0,0,0,5*K.1+5*K.1^2+5*K.1^-3,-5-5*K.1-5*K.1^2-5*K.1^-3,-3,-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,1,1+K.1+K.1^2+K.1^-3,1,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[700, 100, 20, 140, -20, 140, 20, 20, 4, -4, 4, -4, -20, 175, -20, -35, -5, -5, 1, 1, -20, 20, 0, 0, -4, 0, -4, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, -20, 20, 35, 25, 35, -4, -5, 5, -4, -4, -5, -5, -4, 5, -4, -4, -5, -4, 5, 4, -4, 5, 1, -1, -1, -1, 1, 4, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 0, -35, -35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, -5, -4, -5, 5, -4, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 1, 0, -1, 1, 0, -5, -5, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[700, 0, 0, 60, -140, -100, 0, 0, 0, -12, 0, 20, 70, 100, 70, 40, 10, 10, 4, 4, 0, 0, -20, -20, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 70, 0, 0, 20, 0, 0, 6, -20, 0, -10, 6, 10, 0, 6, 0, 0, -10, 0, -10, 0, 0, 0, 0, -8, 0, 2, -4, 0, 0, 4, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, -2, 0, -2, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, -2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[700, -100, -20, 140, -20, 140, -20, -20, -4, -4, -4, -4, -20, 175, -20, -35, -5, -5, 1, 1, 20, 20, 0, 0, 4, 0, 4, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, 20, -20, 35, -25, 35, -4, -5, -5, -4, -4, -5, 5, -4, -5, 4, -4, 5, -4, -5, -4, 4, -5, 1, 1, -1, -1, -1, -4, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 0, -35, -35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 5, 4, 5, 5, 4, 0, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 5, 5, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, -1, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[735, -35, 105, 63, 35, -105, -3, 5, 9, 3, -15, -5, -105, 105, 0, 42, -15, 0, -6, 0, 35, -35, -21, -21, 3, 1, -5, 1, -3, -3, 5, -1, -3, -1, -1, -1, 1, 1, 35, 0, 0, 35, -35, 0, 21, -5, 0, -9, 5, 15, 15, 3, 5, -2, 0, -1, -3, -5, -5, 0, 0, 0, 5, 0, 2, 6, -3, 1, 3, 0, 2, 0, 1, 0, 0, 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, 0, -3, 3, -5, 5, 0, 0, 0, 35, 5, 3, 5, -5, -5, 3, 3, 2, -1, 1, 0, 2, -1, -1, 1, -2, 1, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[735, 35, -105, 63, 35, -105, 3, -5, -9, 3, 15, -5, -105, 105, 0, 42, -15, 0, -6, 0, -35, -35, -21, -21, -3, -1, 5, -1, -3, 3, 5, -1, 3, -1, 1, 1, 1, 1, 35, 0, 0, 35, 35, 0, 21, 5, 0, -9, 5, -15, 15, 3, 5, 2, 0, 1, 3, -5, 5, 0, 0, 0, -5, 0, 2, -6, -3, 1, -3, 0, 2, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 3, 3, -5, -5, 0, 0, 0, -35, -5, -3, -5, -5, 5, 3, 3, -2, -1, -1, 0, -2, -1, 1, -1, -2, -1, 0, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[735, -105, -21, -105, -21, 35, 15, -5, 3, 3, -1, -1, -21, 210, -21, 0, -6, -6, 0, 0, 21, 21, 35, -35, -3, -5, 1, 5, -3, -1, 1, -1, 1, 1, 1, -1, 1, -1, 0, 35, 0, -21, 21, -21, -70, -30, 0, 3, -6, -6, -1, 3, -6, 0, 3, 10, -3, -1, 6, -1, 0, 3, 1, -6, 0, 0, 2, 2, 2, -1, 0, 0, 2, 0, 0, 2, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, -1, -1, 0, 21, 6, -3, 6, 6, 1, -1, 1, 0, -1, -2, -1, 0, 1, 1, 1, 0, -2, 0, 1, -1, -1, -2, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 35, 35, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, -1, -1, -1, -1, -1, -1, -1, 1, 0, 1, 1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[735, 105, 21, -105, -21, 35, -15, 5, -3, 3, 1, -1, -21, 210, -21, 0, -6, -6, 0, 0, -21, 21, 35, -35, 3, 5, -1, -5, -3, 1, 1, -1, -1, 1, -1, 1, 1, -1, 0, 35, 0, -21, -21, 21, -70, 30, 0, 3, -6, 6, -1, 3, -6, 0, 3, -10, 3, -1, -6, -1, 0, -3, -1, 6, 0, 0, 2, 2, -2, 1, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, -1, 1, 0, -21, -6, 3, -6, 6, -1, -1, 1, 0, -1, 2, -1, 0, 1, -1, -1, 0, 2, 0, 1, 1, 1, -2, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 35, 35, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, -1, -1, 1, 1, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |735,-105,-21,-105,-21,35,15,-5,3,3,-1,-1,-21,-105,-21,0,3,3,0,0,21,21,35,-35,-3,-5,1,5,-3,-1,1,-1,1,1,1,-1,1,-1,0,35,0,-21,21,-21,35,15,0,3,3,3,-1,3,3,0,3,-5,-3,-1,-3,-1,0,3,1,3,0,0,-1,-1,-1,-1,0,0,-1,0,0,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,-5,0,0,0,0,-1,-1,0,21,-3,-3,-3,-3,1,-1,1,0,-1,1,-1,0,1,1,1,0,1,0,1,-1,-1,1,-1,0,0,1,0,0,0,0,0,0,0,0,35-70*K.1-35*K.1^2+35*K.1^3-70*K.1^4+35*K.1^5-35*K.1^7,-70+70*K.1+35*K.1^2-35*K.1^3+70*K.1^4-35*K.1^5+35*K.1^7,0,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-5+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,10-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |735,-105,-21,-105,-21,35,15,-5,3,3,-1,-1,-21,-105,-21,0,3,3,0,0,21,21,35,-35,-3,-5,1,5,-3,-1,1,-1,1,1,1,-1,1,-1,0,35,0,-21,21,-21,35,15,0,3,3,3,-1,3,3,0,3,-5,-3,-1,-3,-1,0,3,1,3,0,0,-1,-1,-1,-1,0,0,-1,0,0,-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,-5,0,0,0,0,-1,-1,0,21,-3,-3,-3,-3,1,-1,1,0,-1,1,-1,0,1,1,1,0,1,0,1,-1,-1,1,-1,0,0,1,0,0,0,0,0,0,0,0,-70+70*K.1+35*K.1^2-35*K.1^3+70*K.1^4-35*K.1^5+35*K.1^7,35-70*K.1-35*K.1^2+35*K.1^3-70*K.1^4+35*K.1^5-35*K.1^7,0,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,-5+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,0,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |735,105,21,-105,-21,35,-15,5,-3,3,1,-1,-21,-105,-21,0,3,3,0,0,-21,21,35,-35,3,5,-1,-5,-3,1,1,-1,-1,1,-1,1,1,-1,0,35,0,-21,-21,21,35,-15,0,3,3,-3,-1,3,3,0,3,5,3,-1,3,-1,0,-3,-1,-3,0,0,-1,-1,1,1,0,0,-1,0,0,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,5,0,0,0,0,-1,1,0,-21,3,3,3,-3,-1,-1,1,0,-1,-1,-1,0,1,-1,-1,0,-1,0,1,1,1,1,1,0,0,-1,0,0,0,0,0,0,0,0,35-70*K.1-35*K.1^2+35*K.1^3-70*K.1^4+35*K.1^5-35*K.1^7,-70+70*K.1+35*K.1^2-35*K.1^3+70*K.1^4-35*K.1^5+35*K.1^7,0,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,-10+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,1,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(15: Sparse := true); S := [ K |735,105,21,-105,-21,35,-15,5,-3,3,1,-1,-21,-105,-21,0,3,3,0,0,-21,21,35,-35,3,5,-1,-5,-3,1,1,-1,-1,1,-1,1,1,-1,0,35,0,-21,-21,21,35,-15,0,3,3,-3,-1,3,3,0,3,5,3,-1,3,-1,0,-3,-1,-3,0,0,-1,-1,1,1,0,0,-1,0,0,-1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0,5,0,0,0,0,-1,1,0,-21,3,3,3,-3,-1,-1,1,0,-1,-1,-1,0,1,-1,-1,0,-1,0,1,1,1,1,1,0,0,-1,0,0,0,0,0,0,0,0,-70+70*K.1+35*K.1^2-35*K.1^3+70*K.1^4-35*K.1^5+35*K.1^7,35-70*K.1-35*K.1^2+35*K.1^3-70*K.1^4+35*K.1^5-35*K.1^7,0,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-10+10*K.1+5*K.1^2-5*K.1^3+10*K.1^4-5*K.1^5+5*K.1^7,5-10*K.1-5*K.1^2+5*K.1^3-10*K.1^4+5*K.1^5-5*K.1^7,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-1,0,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,0,0,0,0,1,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0,0,0,0,0,0,0,0,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1,2-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,-1+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,-2+2*K.1+K.1^2-K.1^3+2*K.1^4-K.1^5+K.1^7,1-2*K.1-K.1^2+K.1^3-2*K.1^4+K.1^5-K.1^7,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[784, 336, 112, 112, 112, 0, 48, 0, 16, 16, 0, 0, 112, -56, -56, -14, -8, 4, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -56, 14, -1, 112, 0, -56, 0, -24, -14, 16, -8, -8, 0, 16, -8, -6, -8, 0, 0, 0, 0, 0, -6, -8, 0, 4, -2, -2, 0, 0, 0, 0, -2, -2, 0, -2, -2, 0, 0, 0, -2, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 56, 6, 8, -8, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 4, 2, 2, 2, -1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, -4, 2, 2, 2, 2, 2, 2, 2, 0, -1, 0, 0, 1, 1, 0, 0, -1, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[784, -224, 0, 112, 112, 0, -32, 0, 0, 16, 0, 0, -56, -56, 112, -14, 4, -8, 1, -2, 112, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -56, 14, -1, -56, -56, 0, 0, 16, -14, -8, -8, 0, 0, -8, 4, 4, 16, 0, -8, 0, 4, 0, 4, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 1, 0, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 0, 0, 0, 0, 0, 56, -4, 8, -8, 0, 0, 2, 0, 1, -56, -8, -8, 4, 0, 0, 0, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 4, -1, -1, -1, 2, 2, 2, 1, -1, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 2, 2, 0, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[784, 224, 0, 112, 112, 0, 32, 0, 0, 16, 0, 0, -56, -56, 112, -14, 4, -8, 1, -2, -112, 0, 0, 0, -16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -56, 14, -1, -56, 56, 0, 0, -16, -14, -8, -8, 0, 0, -8, 4, -4, 16, 0, 8, 0, -4, 0, -4, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 1, 0, 0, -2, 0, -1, 0, 1, 0, -2, 0, -1, 0, 0, 0, 0, 0, 0, -56, 4, -8, -8, 0, 0, 2, 0, -1, 56, 8, 8, -4, 0, 0, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 4, -1, -1, -1, 2, 2, 2, 1, -1, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 0, 0, -1, -1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[784, -336, -112, 112, 112, 0, -48, 0, -16, 16, 0, 0, 112, -56, -56, -14, -8, 4, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -56, 14, -1, 112, 0, 56, 0, 24, -14, 16, -8, 8, 0, 16, -8, 6, -8, 0, 0, 0, 0, 0, 6, 8, 0, -4, -2, 2, 0, 0, 0, 0, -2, -2, 0, 2, -2, 0, 0, 0, -2, -1, 1, 0, 0, -1, 0, 0, 0, 0, 0, -56, -6, -8, -8, 0, 0, 2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 4, 2, 2, 2, -1, -1, -1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 4, 2, 2, -2, -2, 2, 2, 2, 0, 1, 0, 0, -1, -1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[840, -280, 168, 120, -56, 0, -40, 0, 24, -8, 0, 0, 168, -60, 0, -15, -12, 0, -3, 0, -56, -56, 0, 0, -8, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, -56, 56, 0, 0, 20, -15, 24, 4, -12, 0, -8, 4, 5, 0, 0, 8, 0, -4, 0, 5, 0, 0, 0, 1, -3, 0, 0, 0, 0, 1, -3, 0, -3, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 56, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, -1, 3, 0, -56, 4, -8, 4, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 8, 0, 0, 0, 0, 0, 15, 15, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, -1, -1, 3, 3, -1, -1, -1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[840, 280, -168, 120, -56, 0, 40, 0, -24, -8, 0, 0, 168, -60, 0, -15, -12, 0, -3, 0, 56, -56, 0, 0, 8, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, -56, -56, 0, 0, -20, -15, 24, 4, 12, 0, -8, 4, -5, 0, 0, -8, 0, 4, 0, -5, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, -3, 0, 3, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 56, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, -1, -3, 0, 56, -4, 8, -4, 4, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 8, 0, 0, 0, 0, 0, 15, 15, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, -1, -1, -3, -3, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[896, 384, 128, 0, 128, 0, 0, 0, 0, 0, 0, 0, 128, 56, -64, -28, 8, -4, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -64, -14, 1, 128, 0, -64, 0, 24, 0, 0, 8, 8, 0, 0, 8, -12, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, -4, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 14, 14, 0, 0, 64, -6, 0, 0, 0, 0, -2, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 2, 2, 2, 2, -14, -14, -4, -2, -2, -2, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, 0, -1, 0, 0, 0, 0, 0, 0, -6, -6, 4, -2, -2, -2, -2, -2, -2, -2, 0, -2, 0, 0, -1, -1, 0, 0, 1, 1, 1, 0, 0, 0, -1, -1, 2, 2, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[896, -256, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, -64, 56, 128, -28, -4, 8, 2, -4, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -64, -14, 1, -64, -64, 0, 0, -16, 0, 0, 8, 0, 0, 0, -4, 8, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 0, 0, 64, 4, 0, 0, 0, 0, -2, 0, -1, -64, 8, 0, -4, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 0, 0, -14, -14, -4, 1, 1, 1, -2, -2, -2, 2, 1, 1, -2, 0, 0, 0, 0, 0, 0, -1, -1, 2, 0, 2, 2, 2, 0, 0, 0, 0, 4, 4, 4, -2, -2, 0, 0, 1, 1, 1, 1, -2, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, -2, -2, 1, 1, 1, 0, 0, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[896, 256, 0, 0, 128, 0, 0, 0, 0, 0, 0, 0, -64, 56, 128, -28, -4, 8, 2, -4, -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -64, -14, 1, -64, 64, 0, 0, 16, 0, 0, 8, 0, 0, 0, -4, -8, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 0, 0, -64, -4, 0, 0, 0, 0, -2, 0, 1, 64, -8, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 2, 2, 0, 0, -14, -14, -4, 1, 1, 1, -2, -2, -2, 2, 1, 1, 2, 0, 0, 0, 0, 0, 0, -1, -1, 2, 0, 2, -2, -2, 0, 0, 0, 0, -4, -4, -4, -2, -2, 0, 0, 1, 1, 1, -1, 2, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, 0, 1, 1, 0, 0, 0, 2, 2, -1, -1, -1, 0, 0, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[896, -384, -128, 0, 128, 0, 0, 0, 0, 0, 0, 0, 128, 56, -64, -28, 8, -4, -4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -64, -14, 1, 128, 0, 64, 0, -24, 0, 0, 8, -8, 0, 0, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, -4, 4, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 14, 14, 0, 0, -64, 6, 0, 0, 0, 0, -2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, -6, 0, 0, 2, 2, -2, -2, -14, -14, -4, -2, -2, -2, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, -1, 0, -1, 0, 0, 0, 0, 0, 0, 6, 6, -4, -2, -2, 2, 2, -2, -2, -2, 0, 2, 0, 0, 1, 1, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, 2, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |900,0,0,-60,-180,-60,0,0,0,12,0,12,90,0,90,0,0,0,0,0,0,0,20,20,0,0,0,0,0,0,0,-4,0,-4,0,0,0,0,0,0,0,90,0,0,0,0,0,-6,0,0,-6,-6,0,0,-6,0,0,-6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-45,-20-20*K.1-20*K.1^2-20*K.1^-3,20*K.1+20*K.1^2+20*K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,2,0,2,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,3,3,4+4*K.1+4*K.1^2+4*K.1^-3,-4*K.1-4*K.1^2-4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |900,0,0,-60,-180,-60,0,0,0,12,0,12,90,0,90,0,0,0,0,0,0,0,20,20,0,0,0,0,0,0,0,-4,0,-4,0,0,0,0,0,0,0,90,0,0,0,0,0,-6,0,0,-6,-6,0,0,-6,0,0,-6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-45,20*K.1+20*K.1^2+20*K.1^-3,-20-20*K.1-20*K.1^2-20*K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,2,0,2,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,3,3,-4*K.1-4*K.1^2-4*K.1^-3,4+4*K.1+4*K.1^2+4*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,-2-2*K.1-2*K.1^2-2*K.1^-3,0,2*K.1+2*K.1^2+2*K.1^-3,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2-2*K.1-2*K.1^2-2*K.1^-3,2*K.1+2*K.1^2+2*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |945,-45,135,-63,45,-63,3,3,-9,-3,-9,-3,-135,0,0,0,0,0,0,0,45,-45,21,21,-3,-1,-3,-1,3,3,3,1,3,1,1,1,-1,-1,45,0,0,45,-45,0,0,0,0,9,0,0,9,-3,0,0,0,0,3,-3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-21-21*K.1-21*K.1^2-21*K.1^-3,21*K.1+21*K.1^2+21*K.1^-3,0,0,-45,0,3,-3,-3,3,0,0,0,45,0,-3,0,0,-3,-3,-3,0,1,0,0,0,1,1,-1,0,0,0,0,-1,0,0,1,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,1,0,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |945,-45,135,-63,45,-63,3,3,-9,-3,-9,-3,-135,0,0,0,0,0,0,0,45,-45,21,21,-3,-1,-3,-1,3,3,3,1,3,1,1,1,-1,-1,45,0,0,45,-45,0,0,0,0,9,0,0,9,-3,0,0,0,0,3,-3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21*K.1+21*K.1^2+21*K.1^-3,-21-21*K.1-21*K.1^2-21*K.1^-3,0,0,-45,0,3,-3,-3,3,0,0,0,45,0,-3,0,0,-3,-3,-3,0,1,0,0,0,1,1,-1,0,0,0,0,-1,0,0,1,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-3-3*K.1-3*K.1^2-3*K.1^-3,3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,1,0,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |945,45,-135,-63,45,-63,-3,-3,9,-3,9,-3,-135,0,0,0,0,0,0,0,-45,-45,21,21,3,1,3,1,3,-3,3,1,-3,1,-1,-1,-1,-1,45,0,0,45,45,0,0,0,0,9,0,0,9,-3,0,0,0,0,-3,-3,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-21-21*K.1-21*K.1^2-21*K.1^-3,21*K.1+21*K.1^2+21*K.1^-3,0,0,45,0,-3,-3,-3,-3,0,0,0,-45,0,3,0,0,3,-3,-3,0,1,0,0,0,1,-1,1,0,0,0,0,1,0,0,-1,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,-3*K.1-3*K.1^2-3*K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,-1*K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |945,45,-135,-63,45,-63,-3,-3,9,-3,9,-3,-135,0,0,0,0,0,0,0,-45,-45,21,21,3,1,3,1,3,-3,3,1,-3,1,-1,-1,-1,-1,45,0,0,45,45,0,0,0,0,9,0,0,9,-3,0,0,0,0,-3,-3,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21*K.1+21*K.1^2+21*K.1^-3,-21-21*K.1-21*K.1^2-21*K.1^-3,0,0,45,0,-3,-3,-3,-3,0,0,0,-45,0,3,0,0,3,-3,-3,0,1,0,0,0,1,-1,1,0,0,0,0,1,0,0,-1,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,3+3*K.1+3*K.1^2+3*K.1^-3,-3*K.1-3*K.1^2-3*K.1^-3,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,1+K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[960, -320, 192, 0, -64, 0, 0, 0, 0, 0, 0, 0, 192, 60, 0, -30, 12, 0, -6, 0, -64, -64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, -64, 64, 0, 0, -20, 0, 0, -4, 12, 0, 0, -4, 10, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, -6, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 64, 15, 15, 1, 1, 0, 5, 0, 0, 0, 0, 1, -3, 0, -64, -4, 0, -4, -4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, 0, -1, -1, 3, 3, -15, -15, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 4, 3, 3, 0, -2, 0, -1, -1, 0, -1, 0, -1, 5, 5, 0, 1, 1, -3, -3, 1, 1, 1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[960, 320, -192, 0, -64, 0, 0, 0, 0, 0, 0, 0, 192, 60, 0, -30, 12, 0, -6, 0, 64, -64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15, 0, -64, -64, 0, 0, 20, 0, 0, -4, -12, 0, 0, -4, -10, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 64, 15, 15, 1, 1, 0, -5, 0, 0, 0, 0, 1, 3, 0, 64, 4, 0, 4, -4, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, -1, -1, -3, -3, -15, -15, 0, -3, -3, -3, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 4, 3, 3, 0, -2, 0, 1, 1, 0, -1, 0, -1, -5, -5, 0, 1, 1, 3, 3, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1, 0, -1, -1, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 1, 1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[980, 420, 140, -28, 140, 28, -12, 12, -4, -4, 4, 4, 140, -70, -70, 14, -10, 5, 2, -1, 0, 0, -28, 0, 0, -12, 0, 0, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, -70, 0, 0, 140, 0, -70, -14, -30, 14, -4, -10, -10, 4, -4, -10, 6, 2, -6, 0, 4, 0, -2, 6, 2, 0, 5, 2, 2, -2, -2, -2, -2, 2, 2, -2, 2, 2, 1, 0, 0, 2, -1, -1, 1, 0, -1, 0, 0, 0, 0, 0, 70, 0, -2, 2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, -4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[980, -280, 0, -28, 140, 28, 8, -8, 0, -4, 0, 4, -70, -70, 140, 14, 5, -10, -1, 2, 140, 0, -28, 0, -4, 8, 4, 0, 0, 0, 0, -4, 0, 0, -4, 0, 0, 0, -70, 0, 0, -70, -70, 0, -14, 20, 14, 2, -10, 0, -2, 2, 5, -4, -4, 4, 2, -2, 5, 4, -4, 0, -2, 0, 2, 0, 1, -2, 0, 0, -1, -1, 1, 0, 2, -2, -1, 1, -1, 0, 2, 0, -1, 0, 0, 0, 0, 0, 0, 70, 0, -2, 2, -2, 2, 0, 0, 0, -70, -10, 2, 5, 0, -2, 2, 0, 2, 2, -2, -4, -1, 0, 2, 2, 0, 1, 2, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[980, 280, 0, -28, 140, 28, -8, 8, 0, -4, 0, 4, -70, -70, 140, 14, 5, -10, -1, 2, -140, 0, -28, 0, 4, -8, -4, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, -70, 0, 0, -70, 70, 0, -14, -20, 14, 2, -10, 0, -2, 2, 5, 4, -4, -4, -2, -2, -5, 4, 4, 0, 2, 0, 2, 0, 1, -2, 0, 0, -1, -1, 1, 0, 2, -2, 1, -1, -1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, -70, 0, 2, 2, -2, -2, 0, 0, 0, 70, 10, -2, -5, 0, 2, 2, 0, -2, 2, 2, -4, 1, 0, -2, -2, 0, -1, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[980, 140, 28, -140, -28, 140, -20, 20, -4, 4, 4, -4, -28, 35, -28, 35, -1, -1, -1, -1, -28, 28, 0, 0, 4, 0, -4, 0, -4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -70, 0, -28, -28, 28, 35, 5, -35, 4, -1, 1, -4, 4, -1, 5, 4, 5, 4, -4, -1, -4, -5, -4, -4, 1, -1, 1, -1, -1, 1, 4, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 2, -2, 0, -28, -1, 4, -1, 1, -4, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 35, 0, 2, -1, -1, 2, -1, -1, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, -1, -1, 1, 1, 2, -1, -1, 2, 0, -1, -1, 0, 0, 0, 0, -2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 2, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[980, -420, -140, -28, 140, 28, 12, -12, 4, -4, -4, 4, 140, -70, -70, 14, -10, 5, 2, -1, 0, 0, -28, 0, 0, 12, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, -70, 0, 0, 140, 0, 70, -14, 30, 14, -4, -10, 10, 4, -4, -10, -6, 2, 6, 0, 4, 0, -2, -6, -2, 0, -5, 2, -2, -2, -2, 2, 2, 2, 2, -2, -2, 2, 1, 0, 0, 2, 1, -1, -1, 0, 1, 0, 0, 0, 0, 0, -70, 0, 2, 2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, -4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[980, -140, -28, -140, -28, 140, 20, -20, 4, 4, -4, -4, -28, 35, -28, 35, -1, -1, -1, -1, 28, 28, 0, 0, -4, 0, 4, 0, -4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -70, 0, -28, 28, -28, 35, -5, -35, 4, -1, -1, -4, 4, -1, -5, 4, -5, -4, -4, 1, -4, 5, 4, 4, -1, -1, -1, -1, -1, -1, -4, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 2, 2, 0, 28, 1, -4, 1, 1, 4, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, -1, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 35, 0, 2, -1, -1, 2, -1, -1, 0, 0, 0, -2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, -1, -1, -1, -1, 2, -1, -1, -2, 0, 1, 1, 0, 0, 0, 0, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1050, -350, 210, -30, -70, 30, 10, -10, -6, 2, 6, -2, 210, -75, 0, 15, -15, 0, 3, 0, -70, -70, -30, 0, 2, 10, -2, 0, 2, -6, -2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, -70, 70, 0, -15, 25, 15, -6, 5, -15, 6, 2, 5, -5, 0, 5, -2, -2, -5, 0, -5, 0, 2, 0, -1, 3, -3, 1, -3, 0, -1, 3, 1, 3, -1, 0, 1, -1, -1, 0, 0, 0, 1, 0, 70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -70, 5, 2, 5, 5, -2, -6, 0, -1, 2, 1, 0, -1, 0, 2, -2, -1, 1, -1, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1050, 350, -210, -30, -70, 30, -10, 10, 6, 2, -6, -2, 210, -75, 0, 15, -15, 0, 3, 0, 70, -70, -30, 0, -2, -10, 2, 0, 2, 6, -2, 2, 0, 0, -2, 0, 2, 0, 0, 0, 0, -70, -70, 0, -15, -25, 15, -6, 5, 15, 6, 2, 5, 5, 0, -5, 2, -2, 5, 0, 5, 0, -2, 0, -1, -3, -3, 1, 3, 0, -1, 3, 1, -3, -1, 0, -1, 1, -1, 0, 0, 0, -1, 0, 70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, -5, -2, -5, 5, 2, -6, 0, 1, 2, -1, 0, 1, 0, -2, 2, -1, -1, 1, 0, 0, 0, 1, 0, 1, -1, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1120, 0, 0, 160, -224, 0, 0, 0, 0, -32, 0, 0, 112, -80, 112, -20, -8, -8, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 112, 0, 0, 0, 0, -20, 16, 16, 0, 0, 16, -8, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -2, -2, 0, 0, 4, 0, 0, 0, -2, 0, -2, 0, 0, 0, -56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 20, 20, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1176, -56, 168, 168, 56, 0, -8, 0, 24, 8, 0, 0, -168, -84, 0, -21, 12, 0, 3, 0, 56, -56, 0, 0, 8, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 21, 1, 56, -56, 0, 0, 4, -21, -24, -4, -12, 0, 8, -4, 1, 0, 0, -8, 0, 4, 0, 1, 0, 0, 0, -1, -3, 0, 0, 0, 0, -1, 3, 0, -3, -1, 0, 1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -56, -1, -8, 8, 0, 0, 1, 3, -1, 56, -4, 8, -4, 4, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, -4, -3, -3, -3, 0, 0, 0, -1, 1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 4, 1, 1, 3, 3, 1, 1, 1, -1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1176, 56, -168, 168, 56, 0, 8, 0, -24, 8, 0, 0, -168, -84, 0, -21, 12, 0, 3, 0, -56, -56, 0, 0, -8, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 21, 1, 56, 56, 0, 0, -4, -21, -24, -4, 12, 0, 8, -4, -1, 0, 0, 8, 0, -4, 0, -1, 0, 0, 0, -1, 3, 0, 0, 0, 0, -1, 3, 0, 3, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 56, 1, 8, 8, 0, 0, 1, -3, 1, -56, 4, -8, 4, 4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, -4, -3, -3, -3, 0, 0, 0, -1, 1, 1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -4, 1, 1, -3, -3, 1, 1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1225, -175, -35, 105, -35, -175, -15, 25, -3, -3, 5, 5, -35, 175, -35, 70, -5, -5, -2, -2, 35, 35, -35, -35, 3, 5, -5, 5, 3, 1, -5, 1, 1, 1, -1, -1, -1, -1, 0, 0, 0, -35, 35, -35, 35, -25, 0, -3, -5, -5, 5, -3, -5, -10, -3, -5, 3, 5, 5, 5, 0, -3, -5, -5, -2, -2, -1, -1, -1, 5, -2, 0, -1, 0, 0, -1, 2, 1, 0, -2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 5, 3, 5, 5, -5, 1, 1, 2, 1, 1, 1, 2, 1, -1, -1, 2, 1, 0, 1, -1, 1, 1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1225, 175, 35, 105, -35, -175, 15, -25, 3, -3, -5, 5, -35, 175, -35, 70, -5, -5, -2, -2, -35, 35, -35, -35, -3, -5, 5, -5, 3, -1, -5, 1, -1, 1, 1, 1, -1, -1, 0, 0, 0, -35, -35, 35, 35, 25, 0, -3, -5, 5, 5, -3, -5, 10, -3, 5, -3, 5, -5, 5, 0, 3, 5, 5, -2, 2, -1, -1, 1, -5, -2, 0, -1, 0, 0, -1, -2, -1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, -5, -3, -5, 5, 5, 1, 1, -2, 1, -1, 1, -2, 1, 1, 1, 2, -1, 0, 1, 1, -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1280, 0, 0, 0, -256, 0, 0, 0, 0, 0, 0, 0, 128, 80, 128, -40, 8, 8, -4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, 0, 128, 0, 0, 0, 0, 0, 0, -16, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -64, 20, 20, -1, -1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, -20, -20, 0, -2, -2, -2, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, -2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1344, -64, 192, 0, 64, 0, 0, 0, 0, 0, 0, 0, -192, 84, 0, -42, -12, 0, 6, 0, 64, -64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, -21, -1, 64, -64, 0, 0, -4, 0, 0, 4, 12, 0, 0, 4, 2, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, -2, -6, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0, -64, 1, 0, 0, 0, 0, -1, -3, 1, 64, 4, 0, 4, -4, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 1, 1, 3, 3, -21, -21, 4, 3, 3, 3, 0, 0, 0, -2, -1, -1, -1, 0, 0, 1, 0, 0, 0, -3, -3, 0, 0, 0, 1, 1, 0, -1, 0, -1, 1, 1, -4, -1, -1, -3, -3, -1, -1, -1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, -1, -1, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1344, 64, -192, 0, 64, 0, 0, 0, 0, 0, 0, 0, -192, 84, 0, -42, -12, 0, 6, 0, -64, -64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, -21, -1, 64, 64, 0, 0, 4, 0, 0, 4, -12, 0, 0, 4, -2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, -2, 6, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0, 64, -1, 0, 0, 0, 0, -1, 3, -1, -64, -4, 0, -4, -4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, -3, -3, -21, -21, 4, 3, 3, 3, 0, 0, 0, -2, -1, -1, 1, 0, 0, 1, 0, 0, 0, -3, -3, 0, 0, 0, -1, -1, 0, -1, 0, -1, -1, -1, 4, -1, -1, 3, 3, -1, -1, -1, -1, -2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1400, 0, 0, -40, -280, 40, 0, 0, 0, 8, 0, -8, 140, -100, 140, 20, -10, -10, 2, 2, 0, 0, -40, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 140, 0, 0, -20, 0, 20, -4, 20, 0, 4, -4, -10, 0, -4, 0, 0, 4, 0, 4, 0, 0, 0, 0, -4, 0, -2, 4, 0, 0, 2, 2, -2, 0, -4, -2, 0, 0, 2, 0, 2, 0, 0, 0, -70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1470, -70, 210, -42, 70, 42, 2, -2, -6, -2, 6, 2, -210, -105, 0, 21, 15, 0, -3, 0, 70, -70, -42, 0, -2, 2, 2, 0, 2, -6, -2, -2, 0, 0, -2, 0, 2, 0, 70, 0, 0, 70, -70, 0, -21, 5, 21, 6, -5, -15, -6, -2, -5, -1, 0, 1, 2, 2, 5, 0, -1, 0, -2, 0, 1, 3, 3, -1, -3, 0, 1, -3, -1, 3, 1, 0, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -70, 0, 2, -2, 2, -2, 0, 0, 0, 70, -5, -2, -5, 5, 2, 6, 0, 1, -2, -1, 0, 1, 0, -2, 2, -1, -1, 1, 0, 0, 0, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1470, 70, -210, -42, 70, 42, -2, 2, 6, -2, -6, 2, -210, -105, 0, 21, 15, 0, -3, 0, -70, -70, -42, 0, 2, -2, -2, 0, 2, 6, -2, -2, 0, 0, 2, 0, 2, 0, 70, 0, 0, 70, 70, 0, -21, -5, 21, 6, -5, 15, -6, -2, -5, 1, 0, -1, -2, 2, -5, 0, 1, 0, 2, 0, 1, -3, 3, -1, 3, 0, 1, -3, -1, -3, 1, 0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 70, 0, -2, -2, 2, 2, 0, 0, 0, -70, 5, 2, 5, 5, -2, 6, 0, -1, -2, 1, 0, -1, 0, 2, -2, -1, 1, -1, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1575,225,45,-105,-45,-105,-15,-15,-3,3,-3,3,-45,0,-45,0,0,0,0,0,-45,45,35,35,3,5,3,5,-3,1,-3,-1,1,-1,-1,-1,1,1,0,0,0,-45,-45,45,0,0,0,3,0,0,3,3,0,0,3,0,3,3,0,3,0,-3,3,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-35-35*K.1-35*K.1^2-35*K.1^-3,35*K.1+35*K.1^2+35*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,-45,0,3,0,0,3,-1,-1,0,-1,0,-1,0,-1,-1,-1,0,0,0,-1,-1,1,0,-1,0,0,1,-5-5*K.1-5*K.1^2-5*K.1^-3,5*K.1+5*K.1^2+5*K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1575,225,45,-105,-45,-105,-15,-15,-3,3,-3,3,-45,0,-45,0,0,0,0,0,-45,45,35,35,3,5,3,5,-3,1,-3,-1,1,-1,-1,-1,1,1,0,0,0,-45,-45,45,0,0,0,3,0,0,3,3,0,0,3,0,3,3,0,3,0,-3,3,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35*K.1+35*K.1^2+35*K.1^-3,-35-35*K.1-35*K.1^2-35*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,-45,0,3,0,0,3,-1,-1,0,-1,0,-1,0,-1,-1,-1,0,0,0,-1,-1,1,0,-1,0,0,1,5*K.1+5*K.1^2+5*K.1^-3,-5-5*K.1-5*K.1^2-5*K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1575,-225,-45,-105,-45,-105,15,15,3,3,3,3,-45,0,-45,0,0,0,0,0,45,45,35,35,-3,-5,-3,-5,-3,-1,-3,-1,-1,-1,1,1,1,1,0,0,0,-45,45,-45,0,0,0,3,0,0,3,3,0,0,3,0,-3,3,0,3,0,3,-3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-35-35*K.1-35*K.1^2-35*K.1^-3,35*K.1+35*K.1^2+35*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,45,0,-3,0,0,-3,-1,-1,0,-1,0,-1,0,-1,1,1,0,0,0,-1,1,-1,0,1,0,0,-1,5+5*K.1+5*K.1^2+5*K.1^-3,-5*K.1-5*K.1^2-5*K.1^-3,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(7: Sparse := true); S := [ K |1575,-225,-45,-105,-45,-105,15,15,3,3,3,3,-45,0,-45,0,0,0,0,0,45,45,35,35,-3,-5,-3,-5,-3,-1,-3,-1,-1,-1,1,1,1,1,0,0,0,-45,45,-45,0,0,0,3,0,0,3,3,0,0,3,0,-3,3,0,3,0,3,-3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35*K.1+35*K.1^2+35*K.1^-3,-35-35*K.1-35*K.1^2-35*K.1^-3,0,0,0,0,0,0,0,0,0,0,0,45,0,-3,0,0,-3,-1,-1,0,-1,0,-1,0,-1,1,1,0,0,0,-1,1,-1,0,1,0,0,-1,-5*K.1-5*K.1^2-5*K.1^-3,5+5*K.1+5*K.1^2+5*K.1^-3,0,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,-1*K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,-1-K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1+K.1+K.1^2+K.1^-3,-1*K.1-K.1^2-K.1^-3,0,K.1+K.1^2+K.1^-3,-1-K.1-K.1^2-K.1^-3,0,-1*K.1-K.1^2-K.1^-3,1+K.1+K.1^2+K.1^-3,0,0,0,0,0,0,0,0,0,-1-K.1-K.1^2-K.1^-3,K.1+K.1^2+K.1^-3,0,0]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[1960, 280, 56, 280, -56, 0, 40, 0, 8, -8, 0, 0, -56, -140, -56, -35, 4, 4, 1, 1, -56, 56, 0, 0, -8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, -56, -56, 56, 0, -20, -35, -8, 4, -4, 0, -8, 4, -5, -8, 0, -8, 0, 4, 0, -5, 8, 0, -4, 1, -1, 0, 0, 0, 0, 1, 1, 0, -1, 1, 0, 1, 0, 1, -1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, -1, 1, 0, -56, 4, -8, 4, -4, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 35, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, -1, -1, 1, 1, -1, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1960, -280, -56, 280, -56, 0, -40, 0, -8, -8, 0, 0, -56, -140, -56, -35, 4, 4, 1, 1, 56, 56, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, -56, 56, -56, 0, 20, -35, -8, 4, 4, 0, -8, 4, 5, -8, 0, 8, 0, -4, 0, 5, -8, 0, 4, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, -1, 0, 1, 1, 1, 0, -1, 1, 0, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, -1, -1, 0, 56, -4, 8, -4, -4, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 35, 0, -1, -1, -1, -1, -1, -1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, -1, -1, -1, -1, -1, -1, -1, 1, 0, 1, 1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2240, 320, 64, 0, -64, 0, 0, 0, 0, 0, 0, 0, -64, 140, -64, -70, -4, -4, 2, 2, -64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, 0, -64, -64, 64, 0, 20, 0, 0, -4, 4, 0, 0, -4, -10, 0, 0, 0, 0, -4, 0, 0, 0, 0, 4, 2, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 35, 35, 0, 0, 0, -5, 0, 0, 0, 0, 1, -1, 0, -64, -4, 0, -4, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, -1, -1, 1, 1, -35, -35, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, 1, 0, 1, -5, -5, 0, 1, 1, -1, -1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, 0, -1, -1, 0, 1, 1, 1, 1, 1, 1, 1, -1, -1, 0, 0, -1, -1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2240, -320, -64, 0, -64, 0, 0, 0, 0, 0, 0, 0, -64, 140, -64, -70, -4, -4, 2, 2, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -35, 0, -64, 64, -64, 0, -20, 0, 0, -4, -4, 0, 0, -4, 10, 0, 0, 0, 0, 4, 0, 0, 0, 0, -4, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, 0, 35, 35, 0, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 64, 4, 0, 4, 4, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5, -5, 0, 0, -1, -1, -1, -1, -35, -35, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1, 1, 1, 0, 1, 0, 1, 5, 5, 0, 1, 1, 1, 1, 1, 1, 1, -1, 0, -1, -1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, 1, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 1, 1, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2450, 350, 70, -70, -70, 70, -10, 10, -2, 2, 2, -2, -70, -175, -70, 35, 5, 5, -1, -1, -70, 70, -70, 0, 2, -10, -2, 0, -2, -2, 2, 2, 0, 0, 2, 0, -2, 0, 0, 0, 0, -70, -70, 70, -35, -25, 35, 2, 5, -5, -2, 2, 5, 5, 2, -5, 2, -2, 5, -2, 5, -2, -2, -5, -1, 1, 1, 1, -1, 2, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -70, 5, 2, 5, -5, -2, 2, 0, -1, 2, 1, 2, -1, 0, 2, 2, 1, 1, -1, 0, 0, -2, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[2450, -350, -70, -70, -70, 70, 10, -10, 2, 2, -2, -2, -70, -175, -70, 35, 5, 5, -1, -1, 70, 70, -70, 0, -2, 10, 2, 0, -2, 2, 2, 2, 0, 0, -2, 0, -2, 0, 0, 0, 0, -70, 70, -70, -35, 25, 35, 2, 5, 5, -2, 2, 5, -5, 2, 5, -2, -2, -5, -2, -5, 2, 2, 5, -1, -1, 1, 1, 1, -2, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, -5, -2, -5, -5, 2, 2, 0, 1, 2, -1, 2, 1, 0, -2, -2, 1, -1, 1, 0, 0, 2, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_101606400_g:= KnownIrreducibles(CR);