-
g2c_curves • Show schema
Hide schema
{'Lhash': '312369878683860827', 'abs_disc': 43904, 'analytic_rank': 0, 'analytic_rank_proved': True, 'analytic_sha': 1, 'aut_grp_id': '[4,2]', 'aut_grp_label': '4.2', 'aut_grp_tex': 'C_2^2', 'bad_lfactors': '[[2,[1,1]],[7,[1,0,-1]]]', 'bad_primes': [2, 7], 'class': '784.a', 'cond': 784, 'disc_sign': -1, 'end_alg': 'Q x Q', 'eqn': '[[56,0,27,0,4],[0,1,0,1]]', 'g2_inv': "['1067368445729034408/343','6352710665144931/49','50408453477952/7']", 'geom_aut_grp_id': '[4,2]', 'geom_aut_grp_label': '4.2', 'geom_aut_grp_tex': 'C_2^2', 'geom_end_alg': 'Q x Q', 'globally_solvable': 1, 'has_square_sha': True, 'hasse_weil_proved': True, 'igusa_clebsch_inv': "['21288','3000','20891172','175616']", 'igusa_inv': "['10644','4720114','2790613504','1855953490895','43904']", 'is_gl2_type': True, 'is_simple_base': False, 'is_simple_geom': False, 'label': '784.a.43904.1', 'leading_coeff': {'__RealLiteral__': 0, 'data': '0.2887965445848189243502666365046684126736890460442209383', 'prec': 190}, 'locally_solvable': True, 'modell_images': ['2.90.1', '3.2160.20'], 'mw_rank': 0, 'mw_rank_proved': True, 'non_solvable_places': [], 'num_rat_pts': 2, 'num_rat_wpts': 0, 'real_geom_end_alg': 'R x R', 'real_period': {'__RealLiteral__': 0, 'data': '6.9311170700356541844063992761', 'prec': 100}, 'regulator': {'__RealLiteral__': 0, 'data': '1.0', 'prec': 10}, 'root_number': 1, 'st_group': 'SU(2)xSU(2)', 'st_label': '1.4.B.1.1a', 'st_label_components': [1, 4, 1, 1, 1, 0], 'tamagawa_product': 6, 'torsion_order': 12, 'torsion_subgroup': '[12]', 'two_selmer_rank': 1, 'two_torsion_field': ['4.0.392.1', [1, 1, 0, -1, 1], [4, 3], False]}
-
g2c_endomorphisms • Show schema
Hide schema
{'factorsQQ_base': [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], 'factorsQQ_geom': [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], 'factorsRR_base': ['RR', 'RR'], 'factorsRR_geom': ['RR', 'RR'], 'fod_coeffs': [0, 1], 'fod_label': '1.1.1.1', 'is_simple_base': False, 'is_simple_geom': False, 'label': '784.a.43904.1', 'lattice': [[['1.1.1.1', [0, 1], [0]], [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], ['RR', 'RR'], [2, -1], 'G_{3,3}']], 'ring_base': [2, -1], 'ring_geom': [2, -1], 'spl_facs_coeffs': [[[-3], [-27]], [[-215], [5291]]], 'spl_facs_condnorms': [56, 14], 'spl_facs_labels': ['56.a4', '14.a6'], 'spl_fod_coeffs': [0, 1], 'spl_fod_gen': [0], 'spl_fod_label': '1.1.1.1', 'st_group_base': 'G_{3,3}', 'st_group_geom': 'G_{3,3}'}
-
g2c_ratpts • Show schema
Hide schema
{'label': '784.a.43904.1', 'mw_gens': [[[[11, 2], [1, 2], [1, 1]], [[-7, 4], [9, 4], [0, 1], [0, 1]]]], 'mw_gens_v': True, 'mw_heights': [], 'mw_invs': [12], 'num_rat_pts': 2, 'rat_pts': [[1, -1, 0], [1, 0, 0]], 'rat_pts_v': True}
-
g2c_galrep • Show schema
Hide schema
-
id: 144
{'conductor': 784, 'lmfdb_label': '784.a.43904.1', 'modell_image': '2.90.1', 'prime': 2}
-
id: 145
{'conductor': 784, 'lmfdb_label': '784.a.43904.1', 'modell_image': '3.2160.20', 'prime': 3}
-
g2c_tamagawa • Show schema
Hide schema
-
id: 145994
{'label': '784.a.43904.1', 'local_root_number': -1, 'p': 2, 'tamagawa_number': 2}
-
id: 145995
{'cluster_label': 'cc2_1~2c2_1~2c2_1~2_0', 'label': '784.a.43904.1', 'local_root_number': -1, 'p': 7, 'tamagawa_number': 3}
-
g2c_plots • Show schema
Hide schema
{'label': '784.a.43904.1', 'plot': '%2BnaQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuMnNV5P/BnvLbXxt4ZbC94beJYVgSiW9I2JRuiJhakIaZRC4EqKqFqS6KoShsXxaKUBLUVThRxSxWpqpekTaPQtDRGqqDqH0GNI9UmLaF1SVApSQlJDZhi49iYGV9n7fX7%2B2N%2B785lZ40vuzuzcz4f6dF7zpmZnWf8suY7Zy4uZFmWBQAAyZjX6QYAAJhdAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIzDlPPPFEXH/99bF69eooFArxj//4j02XZ1kWmzdvjtWrV8fixYvjmmuuieeee65D3QJ0HwEQmHOOHDkSP//zPx9btmxpe/kDDzwQX/ziF2PLli2xc%2BfOGBoaig984ANx6NChM76PLMuiUqlElmXT1TZA1yhk/nYD5rBCoRCPPfZY3HjjjRFRC26rV6%2BOTZs2xac//emIiKhWq7Fy5cq4//774xOf%2BMQZ/dxKpRKlUinK5XIUi8UZ6x%2BgE%2BwAAj1l165dsXfv3tiwYcPEWn9/f1x99dXx5JNPdrAzgO4xv9MNAEynvXv3RkTEypUrm9ZXrlwZL7300pS3q1arUa1WJ%2BaVSmVmGgToAnYAgZ5UKBSa5lmWTVprdO%2B990apVJqoNWvWzHSLAB0jAAI9ZWhoKCLqO4G5ffv2TdoVbHTXXXdFuVyeqN27d89onwCdJAACPWXdunUxNDQU27Ztm1gbGxuLHTt2xC/90i9Nebv%2B/v4oFotNBdCrvAcQmHMOHz4cP/7xjyfmu3btimeeeSaWL18eb33rW2PTpk1xzz33xKWXXhqXXnpp3HPPPXHBBRfEb/7mb3awa4DuIQACc85//ud/xvve976J%2Be233x4REbfeems89NBDceedd8axY8fik5/8ZBw8eDCuuuqq%2BNa3vhUDAwOdahmgq/geQIA2fA8g0Mu8BxAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAARqMjo7G8PBwjIyMdLoVgBlTyLIs63QTAN2mUqlEqVSKcrkcxWKx0%2B0ATCs7gAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIzPxON5CCxx%2BPePjhiJUra3XxxfVjXv39ne4SAEiFADgLvve9WgA8nWKxORBedNHUx8HBiAULZqd3AKD3CICzYMOG2g7fa6/Vat%2B%2B%2BnHfvoiTJyMqlVr9%2BMdn9jMvvLAWBvMaHKwfW8eDgxEDAxGFwsw%2BTgBgbihkWZZ1uomUZVnEG2/Uw2Bj/fSnk48HDkScOnX297NgQXMgXLGiXvm8cX358lrInOddoiSqUqlEqVSKcrkcxWKx0%2B0ATCsBcI45dSri9ddrYXD//tqxsfK1/fvr4%2BPHz%2B2%2B5s2LWLasFgYbg2E%2Bz8fLl9evt3x5RKkU0dc3vY8bZsvo6GiMjo7G%2BPh4/OhHPxIAgZ4kACbg6NF6INy/v7aL2HrMa//%2BWsA8fPjc769QqIXAxmB44YX18bJltcrXGsfCI93CDiDQywRA2qpWa0HwwIH2x6nqyJHzv%2B%2BBgXogvPDC5iqVmsf5PB%2BXSj5RzfQQAIFeJgAyrcbGIg4erIXBxmO7euON5vnRo9PTQ39/cyAslWqfsi4WJ8/ztYGB5rWBAZ%2B0Tp0ACPQyAZCuMTZWC4Wnq3J58rhcrtWhQ9Pbz6JF9TCYB8R83K6WLq1V4zw/LlkSMd9n7ucUARDoZf6XRNdYuLD%2BPYjnYny89lU6eSBsHDfO86/cmaryD80cP16rffum5/EtWlQPg3k4zMftju3qgguaj0uWRCxe7NPaAJwdAZCe0ddX/1DJ%2BThxorabWKnUj/n4dHX48OTj4cO173mMqAfK/fvP/7G2Wry4FgrfrPLrNR5bx621aFHzWNgEZsKpU7X3n%2Bd1/HjzOJ%2B3GzfWdddFvPe9nX403U8AhBYLFtS/0mY6VKv1QHjkSG185Eg9IObr%2BTGvxvnRo7X50aP1%2BbFj9fs4dqxWBw5MT8%2Bns2BBPQw21uLFtfdftq739zev5/PGWrSotgPcuLZwYX09r3w9Ly%2Brw5kbH689wT1xovaWm7Gx5nG7eWtVq%2B3njcd24%2BPHm9fahbwTJ6bncQ4MCIBnwl%2BfMMPyQDM4OL0/99SpWujLA2F%2BbFfHjrWf58GxsY4erf2l3LiW72JG1P8HUqlM7%2BM5F/Pm1QJpYyhcuLC%2B1njMq3XeWvPn1475F65/4Qu1l%2BXz9fnzJ1dfX/2yvr6pj%2B0qv2zevOZju3Fr%2Bdd9ppZltTp1qrnGx2vVOG89tqv8spMnm9cb5ydPtp/na43zdnXiRPvx2FjzemPla3l4a1d5WJtr7/jPnxw2PlFs9ySzdf0d7%2Bh053ODD4EAb%2BrkyXoozF9maRxPVVO9fNO6C9BarbsH%2BXy6dgjOTCUiShFRjoju/RDIVMFwqmPreKqKmDzOtQbPxnnr/1HyebtjXq3zxsqDWuta67GxGn8uUysUmp8onWm17sTn88Zj6y5%2Bu53/qSq/jSc4M0sABOaMLKvvaLS%2BFNX68lXruN0uSb670rqbcuJExNGjlfjLvyzF7/xOOQqFYtudmXa7Oo27Qq07Qq3Velm%2By%2BRv5dmVB%2BfW3dl2a1Pt6Dbu9rbbAZ5qx7i1Gtcbd6Qbx/Pn14Nb4%2BWt1W73u3HNWyjSJgACtNHJr4HJd7VaX65sfKmydcerMTy22yFr3T3Lx/n9tVa%2B3u7YOp5Ku13DqXYXT1en28VsPJ5ptb6sDimS/wG6TKFQDykAM8FzHwCAxAiAAACJEQABABIjAAIAJEYABABIjAAI0GB0dDSGh4djZGSk060AzBjfAwjQRie/BxBgptkBBABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAARoMDo6GsPDwzEyMtLpVgBmTCHLsqzTTQB0m0qlEqVSKcrlchSLxU63AzCt7AACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECINBzNm/eHIVCoamGhoY63RZA15jf6QYAZsLP/uzPxre//e2JeV9fXwe7AeguAiDQk%2BbPn2/XD2AKXgIGetILL7wQq1evjnXr1sVHPvKR%2BN///d9OtwTQNQpZlmWdbgJgOj3%2B%2BONx9OjRuOyyy%2BK1116Lz3/%2B8/E///M/8dxzz8WKFSva3qZarUa1Wp2YVyqVWLNmTZTL5SgWi7PVOsCsEACBnnfkyJF429veFnfeeWfcfvvtba%2BzefPm%2BOxnPztpXQAEepGXgIGet2TJknj7298eL7zwwpTXueuuu6JcLk/U7t27Z7FDgNnlQyBAz6tWq/HDH/4w1q9fP%2BV1%2Bvv7o7%2B/fxa7AugcO4BAz7njjjtix44dsWvXrvj3f//3%2BPCHPxyVSiVuvfXWTrcG0BXsAAI955VXXolbbrkl9u/fHxdddFG8%2B93vjqeeeirWrl3b6dYAuoIPgQC0UalUolQq%2BRAI0JO8BAwAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAA1GR0djeHg4RkZGOt0KwIwpZFmWdboJgG5TqVSiVCpFuVyOYrHY6XYAppUdQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBECABqOjozE8PBwjIyOdbgVgxhSyLMs63QRAt6lUKlEqlaJcLkexWOx0OwDTyg4gAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIECD0dHRGB4ejpGRkU63AjBjClmWZZ1uAqDbVCqVKJVKUS6Xo1gsdrodgGllBxAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQoMHo6GgMDw/HyMhIp1sBmDGFLMuyTjcB0G0qlUqUSqUol8tRLBY73Q7AtLIDCACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkZn6nG5jLsiyLQ4cOdboNYBpUq9WoVqsT8/x3u1KpdKolYIYNDAxEoVDodBsdUciyLOt0E3NVpVKJUqnU6TYAgHNQLpejWCx2uo2OEADPw3TsAI6MjMTOnTunqaP2KpVKrFmzJnbv3j2j/6HPxmPptfuZrXMTMTuPZy6fm9YdwD179sS73vWu%2BMEPfhCXXHLJtN5Xq7n859aJ%2B%2Bi135teup%2B5dm5S3gH0EvB5KBQK5/0feF9f36w9%2BygWizN6X7P1WHrtfiJm/txEzM7j6cVzMzAw4M%2Bty%2B4j1yu/N714P710bnqVD4F02MaNGzvdwrSZrcfSa/czW2bj8Tg356aX/tycG/czW3rpsXSCl4ATkL9XMeX3OnQr56Z7vfLKKxMvZb3lLW/pdDs08HvTvZybucMOYAL6%2B/vj7rvvjv7%2B/k63Qgvnpnvl58S56T5%2Bb7qXczN32AEEaMNOBtDL7AACACRGAAQASIwACACQGAEQACAxAmCPyLIsNm/eHKtXr47FixfHNddcE88999wZ3/7ee%2B%2BNQqEQmzZtmsEu03Qu5%2Bbee%2B%2BNkZGRGBgYiIsvvjhuvPHGeP7552epY%2Bi8Bx98MNatWxeLFi2KK6%2B8Mr7zne9Med2vfOUrsX79%2Bli2bFksW7Ysrr322viP//iPWew2LWdzbhpt3bo1CoVC3HjjjTPcIWdCAOwRDzzwQHzxi1%2BMLVu2xM6dO2NoaCg%2B8IEPnNE/Vbdz5874q7/6q/i5n/u5Weg0Pedybnbs2BEbN26Mp556KrZt2xYnT56MDRs2xJEjR2axc%2BiMRx55JDZt2hR//Md/HN///vdj/fr18cEPfjBefvnlttffvn173HLLLfEv//Iv8d3vfjfe%2Bta3xoYNG%2BL//u//Zrnz3ne25yb30ksvxR133BHr16%2BfpU55Uxlz3qlTp7KhoaHsvvvum1g7fvx4ViqVsi9/%2Bcunve2hQ4eySy%2B9NNu2bVt29dVXZ5/61Kdmut2knM%2B5abRv374sIrIdO3bMRJu0US6Xs4jIyuVyp1tJzrve9a7s937v95rWLr/88uwzn/nMGd3%2B5MmT2cDAQPY3f/M3M9Fe0s7l3Jw8eTJ7z3vek/31X/91duutt2Yf%2BtCHZrpNzoAdwB6wa9eu2Lt3b2zYsGFirb%2B/P66%2B%2Bup48sknT3vbjRs3xq/%2B6q/GtddeO9NtJul8zk2jcrkcERHLly%2Bf9h6hm4yNjcXTTz/d9DsTEbFhw4Yz/p05evRonDhxwu/LNDvXc/O5z30uLrroovj4xz8%2B0y1yFuZ3ugHO3969eyMiYuXKlU3rK1eujJdeemnK223dujW%2B973vxc6dO2e0v5Sd67lplGVZ3H777fHe9743rrjiimnvEbrJ/v37Y3x8vO3vTP779GY%2B85nPxCWXXOKJ7TQ7l3Pzb//2b/HVr341nnnmmdlokbNgB3AOevjhh2Pp0qUTdeLEiYiIKBQKTdfLsmzSWm737t3xqU99Kv7u7/4uFi1aNOM9p2I6zk2rP/iDP4j/%2Bq//im984xvT3i90q3P9nXnggQfiG9/4Rjz66KP%2BbpshZ3puDh06FL/1W78VX/nKV2JwcHC22uMM2QGcg2644Ya46qqrJubVajUiartNq1atmljft2/fpGdquaeffjr27dsXV1555cTa%2BPh4PPHEE7Fly5aoVqvR19c3Q4%2Bgd03HuWl02223xT/90z/FE088EW95y1umv2HoMoODg9HX1zdpR%2BlMfmf%2B7M/%2BLO6555749re/7UNtM%2BBsz81PfvKTePHFF%2BP666%2BfWDt16lRERMyfPz%2Bef/75eNvb3jazTTMlAXAOGhgYiIGBgYl5lmUxNDQU27Zti3e84x0RUXuvxo4dO%2BL%2B%2B%2B9v%2BzPe//73x7PPPtu09rGPfSwuv/zy%2BPSnPy38naPpODf57W677bZ47LHHYvv27bFu3boZ7x26wcKFC%2BPKK6%2BMbdu2xU033TSxvm3btvjQhz405e2%2B8IUvxOc///n453/%2B53jnO985G60m52zPzeWXXz7p/zN/8id/EocOHYo///M/jzVr1sx4z5xG5z5/wnS67777slKplD366KPZs88%2Bm91yyy3ZqlWrskqlMnGdX/7lX87%2B4i/%2BYsqf4VPAM%2BNczs3v//7vZ6VSKdu%2BfXu2Z8%2BeiTp69GgnHkJStmzZkv3Mz/xMdtlll/kUcIds3bo1W7BgQfbVr341%2B8EPfpBt2rQpW7JkSfbiiy9mWZZlv/3bv930qdP7778/W7hwYfYP//APTb8vhw4d6tRD6Flne25a%2BRRw97AD2CPuvPPOOHbsWHzyk5%2BMgwcPxlVXXRXf%2Bta3mnajfvKTn8T%2B/fs72GWazuXcfOlLX4qIiGuuuabpZ33ta1%2BLj370o7PRdrI2btwYGzdujEqlEqVSqdPtJOnmm2%2BOAwcOxOc%2B97nYs2dPXHHFFfHNb34z1q5dGxERL7/8csybV38L%2B4MPPhhjY2Px4Q9/uOnn3H333bF58%2BbZbL3nne25oXsVsizLOt0EQLfJA2C5XI5isdjpdgCmlZgOAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAARoMDo6GsPDwzEyMtLpVgBmTCHLsqzTTQB0m0qlEqVSKcrlchSLxU63AzCt7AACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAjQYHR2N4eHhGBkZ6XQrADOmkGVZ1ukmALpNpVKJUqkU5XI5isVip9sBmFZ2AAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABGoyOjsbw8HCMjIx0uhWAGVPIsizrdBMA3aZSqUSpVIpyuRzFYrHT7QBMKzuAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAj0nI9%2B9KNRKBSa6t3vfnen2wLoGvM73QDATPiVX/mV%2BNrXvjYxX7hwYQe7AeguAiDQk/r7%2B2NoaKjTbQB0JS8BAz1p%2B/btcfHFF8dll10Wv/u7vxv79u077fWr1WpUKpWmAuhVhSzLsk43ATCdHnnkkVi6dGmsXbs2du3aFX/6p38aJ0%2BejKeffjr6%2B/vb3mbz5s3x2c9%2BdtJ6uVyOYrE40y0DzCoBEJjTHn744fjEJz4xMX/88cdj/fr1TdfZs2dPrF27NrZu3Rq//uu/3vbnVKvVqFarE/NKpRJr1qwRAIGe5D2AwJx2ww03xFVXXTUxv%2BSSSyZdZ9WqVbF27dp44YUXpvw5/f39U%2B4OAvQaARCY0wYGBmJgYOC01zlw4EDs3r07Vq1aNUtdAXQ3HwIBesrhw4fjjjvuiO9%2B97vx4osvxvbt2%2BP666%2BPwcHBuOmmmzrdHkBXsAMI9JS%2Bvr549tln4%2Btf/3q88cYbsWrVqnjf%2B94XjzzyyJvuFAKkwodAANqoVCpRKpV8CAToSV4CBgBIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgQIPR0dEYHh6OkZGRTrcCMGMKWZZlnW4CoNtUKpUolUpRLpejWCx2uh2AaWUHEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARCgwejoaAwPD8fIyEinWwGYMYUsy7JONwHQbSqVSpRKpSiXy1EsFjvdDsC0sgMIAJAYARAAIDECIABAYgRAAIDECIAAAImZ3%2BkGYLZlWcTJkxHj483Vbu3UqfbzU6eaL8vnZ1NZNvk41Vpr5Y%2Bjcdx4bB2fiUJh8rhQmDxunc%2BbV6vGebvL8vGbVV9f/ZiPW%2Bd9fRHz5zevz58/eZwf8x4AqBEAmdL4eMTYWL1OnJh6no8bj3k1zk%2BerM9Pnmy%2BXrt5Y0213ljj4/XrtIa6/Dq%2B%2BChNjaFwwYL6OK8FC5rn8/7/6yMf/GDEokW1y/PrLFxYH%2Bfr%2BVpe/f3Nl51p9ffXqnW%2BYIEQC0wf3wPYBbKsFlqOH4%2BoVpuP%2Bbhx/XQ1Nla/3thY87F1La%2Bp5qdOdfpPZvYVCpN3mlrnjcd2O1VnUmezc9au8l7bjfN5u3E77XYNp9plbFftdi/b7WSeya7oVLur7XZj29X0qkREKSLKEdEd3wPYGAgba9Gi5nE%2Bz8eNla8vXlxfazdevHhy5aEYmPvsAM6Cr3894ktfqge61qpW58auVF9f805F405H465I6%2BVnWo27MI1rU%2B3QtK637ui0vgzYuNb6kmFjiGPuOnVq8u5v47HdjnHjDnPjuFKJuPnmiIceqv031rpD3W5Xu3VX/HS75m/2BGxsbHKozdcPHerIH28sXFgPgxdcMHl8wQX1yudLljSPG6%2BzZEm9Gq9rpxNmngA4C157LeKpp878%2BgsWTH4G3%2B5Zf375VLsC%2BctIjcfWtcaXmVrnrS9dCUd0u3nzav%2BtTodKpXa86aaITv1DIOPjk3fxT1eNTyrbjVvr2LGpx3mdOFHvJw%2Bg5fLMPeZCYXI4zGvp0snHN6uBgdpRsIRmAuAsuPHGiMsum/qlmMZxf7%2BgBdT09dV3yzplfLwWCo8ebQ6Gx47V1xqPrePGOnKkdtmRI/V5fjx%2BvHZ/WVabHzkyvY9j3rzmQFgs1scDA/UqFmvVeJ1iMaJUqo%2BXLq2dG5jLvAcQoA3/FvDsGh9vDopHjkQcPlwfN84bj4115Ejt5fHWtZmQB8Q8HDaO83k%2BblcXXlh7wg%2BdYgcQgI7r66vvwk2nU6fqwTAPh43HSqU%2Bz8eN65VK8zh/STwPmK%2B%2Beu699ffXgmBjKFy2rD5urGXLJh8FSM6HAAhAz5o3b/qCZZbV3lOZh8K8yuXJ43J56srfX1qt1t4j/tpr59bP4sXNgbCxli9vPubjfL5gwfn/eTC3CYAAcAYKhfr7ti%2B%2B%2BNx/zqlT9ZD4xhu1ahzn84MHm9feeKO2Vi7Xwmj%2BXsxz2YUcGKgHwuXLI1asmPqY17Jl3vvYS7wHEKAN7wGkW%2BUB8uDBeuXh8PXX62v5uPF4Pp/gLhRqu40rVkQMDtaD4eBgczWurVghNHYrARCgDQGQXjQ%2BXg%2BDrXXgwORjXvnL1merUKjtHA4ORlx00eRju1q8eHofM%2B0JgAANRkdHY3R0NMbHx%2BNHP/qRAAhR%2B/BLayjcv79%2BbFdvvHFu97V0aS0IXnxxvVrnF18csXJlLUjO92a2cyIAArRhBxDOz8mTzQHxpz%2BdfGytxi8eP1MrVtQD4cqVER/5SO37dzk9uRkAmHbz59dD2ZnIstp7FH/604h9%2B%2BrHqerAgdr7IfMdyR/%2BsPZzfvEXZ%2B4x9RIBEADouPxDJhdeGHHppW9%2B/fHxWvDbt6/2VTr5cf36me%2B1F3gJGKANLwEDvcy/OgsAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABGoyOjsbw8HCMjIx0uhWAGVPIsizrdBMA3aZSqUSpVIpyuRzFYrHT7QBMKzuAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAE5pRHH300rrvuuhgcHIxCoRDPPPPMpOtUq9W47bbbYnBwMJYsWRI33HBDvPLKKx3oFqA7CYDAnHLkyJF4z3veE/fdd9%2BU19m0aVM89thjsXXr1vjXf/3XOHz4cPzar/1ajI%2BPz2KnAN2rkGVZ1ukmAM7Wiy%2B%2BGOvWrYvvf//78Qu/8AsT6%2BVyOS666KL427/927j55psjIuLVV1%2BNNWvWxDe/%2Bc247rrrzujnVyqVKJVKUS6Xo1gszshjAOgUO4BAT3n66afjxIkTsWHDhom11atXxxVXXBFPPvlkBzsD6B7zO90AwHTau3dvLFy4MJYtW9a0vnLlyti7d%2B%2BUt6tWq1GtVifmlUplxnpanIILAAACQklEQVQE6DQ7gEDXevjhh2Pp0qUT9Z3vfOecf1aWZVEoFKa8/N57741SqTRRa9asOef7Auh2AiDQtW644YZ45plnJuqd73znm95maGgoxsbG4uDBg03r%2B/bti5UrV055u7vuuivK5fJE7d69%2B7z7B%2BhWXgIGutbAwEAMDAyc1W2uvPLKWLBgQWzbti1%2B4zd%2BIyIi9uzZE//93/8dDzzwwJS36%2B/vj/7%2B/vPqF2CuEACBOeX111%2BPl19%2BOV599dWIiHj%2B%2BecjorbzNzQ0FKVSKT7%2B8Y/HH/7hH8aKFSti%2BfLlcccdd8Tb3/72uPbaazvZOkDX8DUwwJzy0EMPxcc%2B9rFJ63fffXds3rw5IiKOHz8ef/RHfxR///d/H8eOHYv3v//98eCDD57V%2B/qyLItDhw7FwMDAad87CDAXCYAAAInxIRAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAiREAAQASIwACACRGAAQASIwACACQGAEQACAxAiAAQGIEQACAxAiAAACJEQABABIjAAIAJEYABABIjAAIAJAYARAAIDECIABAYgRAAIDECIAAAIkRAAEAEiMAAgAkRgAEAEiMAAgAkBgBEAAgMQIgAEBiBEAAgMQIgAAAifl/79h2wZikzxQAAAAASUVORK5CYII%3D'}