-
g2c_curves • Show schema
Hide schema
{'Lhash': '1539865513156672146', 'abs_disc': 29696, 'analytic_rank': 0, 'analytic_rank_proved': False, 'analytic_sha': 1, 'aut_grp_id': '[2,1]', 'aut_grp_label': '2.1', 'aut_grp_tex': 'C_2', 'bad_lfactors': '[[2,[1,1,2]],[29,[1,3,31,29]]]', 'bad_primes': [2, 29], 'class': '464.a', 'cond': 464, 'disc_sign': -1, 'end_alg': 'Q', 'eqn': '[[0,0,-2,-4,3,8],[1,1]]', 'g2_inv': "['-141985700000/29','-6991813125/29','-533176100/29']", 'geom_aut_grp_id': '[2,1]', 'geom_aut_grp_label': '2.1', 'geom_aut_grp_tex': 'C_2', 'geom_end_alg': 'Q', 'globally_solvable': 1, 'has_square_sha': True, 'hasse_weil_proved': False, 'igusa_clebsch_inv': "['680','-5255','-1253953','-3712']", 'igusa_inv': "['680','22770','1180736','71106895','-29696']", 'is_gl2_type': False, 'is_simple_base': True, 'is_simple_geom': True, 'label': '464.a.29696.1', 'leading_coeff': {'__RealLiteral__': 0, 'data': '0.2253348567516756988935777779077256040399977849725265406', 'prec': 190}, 'locally_solvable': True, 'modell_images': ['2.120.3'], 'mw_rank': 0, 'mw_rank_proved': True, 'non_maximal_primes': [2], 'non_solvable_places': [], 'num_rat_pts': 5, 'num_rat_wpts': 3, 'real_geom_end_alg': 'R', 'real_period': {'__RealLiteral__': 0, 'data': '14.421430832107244729188977786', 'prec': 100}, 'regulator': {'__RealLiteral__': 0, 'data': '1.0', 'prec': 10}, 'root_number': 1, 'st_group': 'USp(4)', 'st_label': '1.4.A.1.1a', 'st_label_components': [1, 4, 0, 1, 1, 0], 'tamagawa_product': 4, 'torsion_order': 16, 'torsion_subgroup': '[2,8]', 'two_selmer_rank': 2, 'two_torsion_field': ['3.1.116.1', [-2, 0, -1, 1], [3, 2], False]}
-
g2c_endomorphisms • Show schema
Hide schema
{'factorsQQ_base': [['1.1.1.1', [0, 1], -1]], 'factorsQQ_geom': [['1.1.1.1', [0, 1], -1]], 'factorsRR_base': ['RR'], 'factorsRR_geom': ['RR'], 'fod_coeffs': [0, 1], 'fod_label': '1.1.1.1', 'is_simple_base': True, 'is_simple_geom': True, 'label': '464.a.29696.1', 'lattice': [[['1.1.1.1', [0, 1], [0]], [['1.1.1.1', [0, 1], -1]], ['RR'], [1, -1], 'USp(4)']], 'ring_base': [1, -1], 'ring_geom': [1, -1], 'spl_fod_coeffs': [0, 1], 'spl_fod_gen': [0], 'spl_fod_label': '1.1.1.1', 'st_group_base': 'USp(4)', 'st_group_geom': 'USp(4)'}
-
g2c_ratpts • Show schema
Hide schema
{'label': '464.a.29696.1', 'mw_gens': [[[[-1, 2], [1, 1]], [[-3, 4], [0, 1], [0, 1], [0, 1]]], [[[0, 1], [1, 1]], [[0, 1], [0, 1], [0, 1], [0, 1]]]], 'mw_gens_v': True, 'mw_heights': [], 'mw_invs': [2, 8], 'num_rat_pts': 5, 'rat_pts': [[-1, -2, 2], [0, -1, 1], [0, 0, 1], [1, -6, 2], [1, 0, 0]], 'rat_pts_v': True}
-
g2c_galrep • Show schema
Hide schema
{'conductor': 464, 'lmfdb_label': '464.a.29696.1', 'modell_image': '2.120.3', 'prime': 2}
-
g2c_tamagawa • Show schema
Hide schema
-
id: 99994
{'label': '464.a.29696.1', 'local_root_number': 1, 'p': 2, 'tamagawa_number': 4}
-
id: 99995
{'cluster_label': 'c3c2_1~2_0', 'label': '464.a.29696.1', 'local_root_number': 1, 'p': 29, 'tamagawa_number': 1}
-
g2c_plots • Show schema
Hide schema
{'label': '464.a.29696.1', 'plot': '%2BnaQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4TGcbBvB7ElmIZEqRBEGsSWonVbsqqlWqutBFVbVK09qqLUXRIvZaGtTSoqj6iq/Wz15ra6vYggQhtlBbJoSs7/fHU4mQhCQzc2bm3L/rOlcnk2Ty5HRM7nnP%2Bz6vQSmlQERERES64aR1AURERERkXQyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhERESkMwyARERERDrDAEhEFqeUgslkglJK61KIiAgMgERkBfHx8TAajYiPj9e6FCIiAgMgERERke4wABIRERHpDAMgERERkc4wABLp0LRp0%2BDv7w93d3fUqVMH27dvz/Zr586dC4PB8NBx9%2B5dK1ZMRETmxABIpDO//vor%2BvTpg0GDBuHAgQNo3LgxXnjhBcTExGT7PV5eXrh06VKmw93d3YpVExGROTEAEunMxIkT0a1bN3zwwQcIDAzEpEmT4Ofnh%2BnTp2f7PQaDAT4%2BPpkOIiKyXwyARDqSlJSE/fv3o1WrVpnub9WqFXbt2pXt9926dQtly5ZF6dKl8dJLL%2BHAgQM5/pzExESYTKZMBxER2Q4GQCIduXr1KlJTU%2BHt7Z3pfm9vb8TGxmb5PQEBAZg7dy5WrFiBX375Be7u7mjYsCGioqKy/TmhoaEwGo3ph5%2Bfn1l/DyIiyh8GQCIdMhgMmT5WSj103z3PPPMM3nnnHdSoUQONGzfGkiVLULlyZUydOjXbxx84cCDi4uLSj3Pnzpm1fiIiyp8CWhdARNZTrFgxODs7PzTad%2BXKlYdGBbPj5OSE4ODgHEcA3dzc4Obmlq9aiYjIcjgCSKQjrq6uqFOnDjZs2JDp/g0bNqBBgwaP9RhKKYSHh8PX19cSJRIRkRVwBJBIZ/r164fOnTujbt26qF%2B/PmbOnImYmBj06NEDAPDuu%2B%2BiVKlSCA0NBQAMHz4czzzzDCpVqgSTyYQpU6YgPDwcYWFhWv4aRESUDwyARDrTsWNHXLt2Dd988w0uXbqEqlWrYs2aNShbtiwAICYmBk5OGRcHbt68ie7duyM2NhZGoxG1atXCtm3b8PTTT2v1KxARUT4ZlFJK6yKIyLGZTCYYjUbExcXBy8tL63KIiHSPcwCJiIiIdIYBkIiIiEhnGACJiIiIdIYBkIiIiEhnGACJiIiIdIYBkIiIiEhnGACJyGLCwsIQFBSE4OBgrUshIqL7sA8gEVkc%2BwASEdkWjgASERER6QwDIBEREZHOMAASERER6QwDIBEREZHOMAASERER6QwDIBEREZHOMAASERER6QwDIBEREZHOMAASERER6QwDIBEREZHOMAASkcVwL2AiItvEvYCJyOK4FzARkW3hCCARERE5hNu3ta7AfjAAEhERkd1LSQHq1wc6dQJiY7WuxvYV0LoAIiIiovyaMwc4fBg4fx5wddW6GtvHEUAiIiKyayYTMGSI3B42DChaVNNy7AIDIBEREdm1kSOBf/4BqlQBevbUuhr7wABIREREduvUKWDSJLk9fjzg4qJtPfaCAZCIiIjs1uefA0lJQMuWQJs2WldjPxgAiYiIyC5t2QIsXw44OwPffQcYDFpXZD8YAImIiMjupKQAvXvL7R49gKee0rYee8MASERERHZn1ixp%2B1KkCDB8uNbV2B8GQCIiIrIr169ntH0ZPhx48klt67FHDIBEZDFhYWEICgpCcHCw1qUQkQMZNgy4dk0u%2B7LtS94YlFJK6yKIyLGZTCYYjUbExcXBy8tL63KIyI4dOQLUrAmkpgIbNwLPPad1RfaJI4BERERkF5SShR%2BpqUCHDgx/%2BcEASERERHZh6VJg82bAzQ2YMEHrauwbAyARERHZvIQE4LPP5PaXXwLlymlajt1jACQiIiKbFxoKxMQAZcpIAKT8YQAkIiIim3bqFDBunNz%2B7jugUCFt63EEDIBERERk03r3BhITZb/fV17RuhrHwABIRERENmvlSmD1asDFBZg6lfv9mgsDIBEREdmkO3cy9vvt1w%2BoUkXbehwJAyARERHZpNGjgehooHRpYPBgratxLAyAREREZHNOnpQACMjCj8KFta3H0TAAEhERkU1RCvjkEyApCWjVCnj1Va0rcjwMgERkMWFhYQgKCkJwcLDWpRCRHVm6FFi3DnB1Bb7/ngs/LMGglFJaF0FEjs1kMsFoNCIuLg5eXl5al0NENiw%2BHggMBC5cAIYMAb75RuuKHBNHAImIiMhmDB0q4a9CBWDgQK2rcVwMgERERGQTwsOByZPl9vffAwULaluPI2MAJCIiIs2lpgI9egBpacDrrwOtW2tdkWNjACQiIiLN/fADsHs34OkJTJqkdTWOjwGQiIiINHXpUsZ8v1GjgJIlta1HDxgAiciyUlKAHTvk9pUr2tZCRDapTx/AZAKCg4GePbWuRh8YAInIcubOBcqWBdq0kY8DA4EuXYBbtzQti4hsx%2BrVwJIlgLOzXAZ2dta6In0ooHUBROSgFi8GunbNfF9KCjB/PhAbK11eiUjXbt0CPv5YbvftC9SqpW09esJG0ERkfkoBAQFAZCQAwATACCAOQHob6J07gQYNtKmPiGxCv36yz2/ZssDRo4CHh9YV6QdHAPNBKYX4%2BHityyAym7Q04OZN4No14Pp1OW7eBOLi5L8mk7xjv3ckJMhx964cSUly%2BN09gU1xkemPa3rgvwAwvfl/MN6zKtzckH4UKiR9vzw8ZCWgpyfg5QUYjcATTwBFiwJPPgkUKwYULy4f83IRkX36%2B%2B%2BM1b4TJkgbGJMp5%2B8xN09PTxh0us8cRwDz4d72VkRERGR/9Lw9JQNgPuRmBDA4OBh79%2B7N188zx2OY43FMJhP8/Pxw7ty5fP/DsZXfyVyPYa5zk9taEhKAmBjg7FngzBm5fe4c8L//HYHRWDXXi2%2B9vGR0rUgRGXnbu3cDXn21Jby8MkbmPDxkxK5QIcDdXUbuXF3lUMkJCHytBlyvyw82AfADcA4Zl4DPT1yCm/WeR2IikJwM3LkjR0ICcPu2jDCaTHLExQE3bsiI5P79p1G4cHncuPF4v0vBgoC/v2wrVbEiULkyEBr6HnbtmgtPz9ydlwfZ83PGko9jS%2BfFXPXYyvm1tfOS18eZMEH2%2BC1SBNi7F3jxRW2eM3oeAeQl4HwwGAyP/SRzdnbO9z9WczyGOR/Hy8vLoX4nc9UC5P/cZFXL7dsypS4qSo6TJ%2BU4dUp6aGWtQXr4c3MDSpcGSpWSHlu%2BvhmHtzdQooQcxYoBLi6ZHyUoaAjmzn01F7%2BBF/DVF0D//g/eKwGwenUE9X4VcMp9I4KgoLcQERGBlBTpKnPpEnDxouwdev585iB8/ryEyogIOTIsQ%2BnSMu%2BoWjWgenWgRg2gdm2gfPnHL8vWnzNaPY4tnRdz1WNL5xewnfOSl8eJjATGjJHbkybJmzNbe87oAQOglYSEhNjEY5jzcczBln4nWzgvSkmQad48FFOnAseOASdOyHHhQs7f6%2BUl4cXfX4JNuXLA0aNr0KPHi/Dzk2CX1ze6eTo3n30GXL0qb/WTkzPuf/ppYNmyPIW/%2B2spUECCbMmSQJ06WX9tUpIEwZMnJTSfOAEcPw7s25eA%2BPhCOHtWwuKqVRnf4%2BUljxccLKU%2B84yE5pxqsQX8t5Q9W/qdbOncaPE7paUBH3wAJCYCrVoBnTubtxZ6fLwETLl2b%2B6jnudOZOdxz829oHfkiKx8O3pURqiOHct5EnSxYkClShnHvcua5cvLJVubvJIRG4vLc%2BfCZ%2BBAXFy%2BHL7t22tdEQC5nHzkCHDoEHDwoByHDskfpgf5%2BQENG8rRpAlQtWqe8%2BtD%2BO8pazwvWbP38zJtGhASIlNIjhyRN6rmYu/nxto4Aki55ubmhqFDh8LNzU3rUmxOVucmLg44fFjCxeHDchw5IvdnxdlZQl1goHRSqVJF/lu5soQ8u%2BPjA6du3YCBA1GgYUOtq0lXtKiEuSZNMu5LTpYgvm8fsGeP7Et6%2BLDMp1y8WA5A5i01bQo0bw4895z8v8pr%2BOa/p6zxvGTNns9LTAzw5Zdye9Qo84Y/wL7PjRY4AkhkJmlpMh/v3mjSvRGls2ez/npnZwl1Tz0lI0pBQXJUqiQLKRyJPb8zv3VLwuDOncD27cCuXTIf834lSwItWwKtW8tlLbsM6kQWpBTw4ovA//4n7T%2B3bzffKDrlDQMgUR7cuSMjQ%2BHhGcehQw8Hg3tKl5aFBtWqZRxVqsjCDD2w5wD4oORkYP9%2BYMsWYPNm2eb47t2Mzzs5AfXry%2B537dpJqLfJS/NEVjR3rmwM5OYmr5cBAVpXRAyARI9w/Tpw4IAc4eHSvPTECRnxe5C7u4zm1aiRcVSrJpcM9cyRAuCD7t6VELhuHbB2rcznvF%2BFCkD79kCHDrKghKMepDcXL8obobg4YPTojMvApC0GQKJ/KSVtQ%2B6FvXtHTEzWX1%2B8uOxbWbOmHDVqyCXdApxZ%2BxBHDoAPiomRze1XrpQRwvsXlZQsCbz2GvDGGzJKyDBIjk4pGQlftUpW1u/axddIW8EASLqUmiptQR4Me9euZf315ctLyKtdOyP0%2Bfry0t7j0lMAvN%2BtWzLnaflyCYT394338wPefBN4%2B22ZHkDkiH7%2BGXj3XZnXvH%2B/XCEh28D3n5QtpRSGDRuGkiVLomDBgmjWrBmOPnh9KwehoaEwGAzo06ePBat8tIQEWc35ww9Az54y8uLlJSs333oLGDcO2LhRwp%2Bzs1yyffdd2aD8jz9kD9xTp4ClS4FBg4AXXlCYOXMYSpV6/PMSGhqK4OBgeHp6okSJEmjfvj1OnDhhnRNAmilcWEb8GjachqJFq6BAgVdQtOhqFCqUgnPngLFjM6YKTJgAxMYCs2bNQuPGjVGkSBEUKVIELVq0wJ49e7T%2BVSxi2rRp8Pf3h7u7O%2BrUqYPt27c/1vctXrwYBoMB7W2kpZC55fa83Lx5EyEhIfD19YW7uzsCAwOxZs0aK1WbvYsXgV695PbQoeYJf7k9N5MmTUKVKlVQsGBB%2BPn5oW/fvrh7/6RdPVNE2Rg9erTy9PRUS5cuVYcPH1YdO3ZUvr6%2BymQyPfJ79%2BzZo8qVK6eqV6%2BuevfubYVqlUpLU%2Br8eaXWrFEqNFSpjh2VCghQyslJKbkQkfkoVEipZ55RqmdPpWbOVGrvXqXu3Hn0z8nLeXn%2B%2BefVTz/9pI4cOaLCw8NVmzZtVJkyZdStW7fMeAZsV1xcnAKg4uLitC7F6hYvXqxcXFzUrFmzVEREhOrdu7cqVOhJNX36FfXKK0q5umY8J52dlSpVap/q3n212rv3gDp27Jjq2rWrMhqN6vz581r/KmaV1Xnx8PBQZ8%2BezfH7zpw5o0qVKqUaN26sXn75ZStVaz25PS%2BJiYmqbt266sUXX1Q7duxQZ86cUdu3b1fh4eFWrjyztDSl2rSR53XdukolJ%2Bf/MXN7bhYsWKDc3NzUwoULVXR0tFq3bp3y9fVVffr0yX8xDoABkLKUlpamfHx81OjRo9Pvu3v3rjIajWrGjBk5fm98fLyqVKmS2rBhg2ratKlFAuCtW0rt3q3U7NlK9e6t1LPPKvXkk1kHPUCpEiWUatVKqS%2B%2BUGrRIqWOHVMqJSX3Pzc/5%2BV%2BV65cUQDU1q1bc1%2BEHfn%2B%2B%2B9VYGCgqly5sm4D4NNPP6169OiR6b6AgAA1YMAApZRS168rNX26UvXqZX7O%2BvoqNWiQUqdOpShPT081b948Lcq3mEedl6ykpKSohg0bqtmzZ6suXbo4ZADM7XmZPn26Kl%2B%2BvEpKSrJGeY/txx/leezqqtSRI%2BZ5zNyem5CQENW8efNM9/Xr1081atTIPAXZOV4CpixFR0cjNjYWrVq1Sr/Pzc0NTZs2xa5du3L83pCQELRp0wYtWrTIdx137sjK20WLgK%2B%2BAl5%2BWVZVFi4M1KsnWwpNniwtOa5dk0n1gYFAp05AaCiwZo1chrh8WVZpjhkj864CAuRyb27l57zcL%2B7fLtBFHbxhXEhICCIiIsyy4bw9SkpKwv79%2BzM9XwCgVatW6c%2BXIkWAHj2Av/6SJtT9%2B8sCo0uXgJEjgUqVnHD79i%2BIjq6S5cpze/Q45yUr33zzDYoXL45u3bpZukRN5OW8rFixAvXr10dISAi8vb1RtWpVjBo1CqmpqdYoOUsxMcC9mT/ffCO9TvMrL%2BemUaNG2L9/f/oUitOnT2PNmjVo06ZN/gtyAFyLQ1mKjY0FAHh7e2e639vbG2ez62wMmZvz999/5/oP/tWrskH48eNyHDsmR3R01u1WAKBECZmvd6%2B/XvXq0mqgYMFc/ehcyet5uZ9SCv369UOjRo1QlTOiHdrVq1eRmpqa5fPl3nPpfoGBMid15Ejg999l3uqmTQYAbTBsGLBwIfDpp8B77wGenlb5FSwit%2BcFAHbu3Ik5c%2BYgPDzcGiVqIi/n5fTp09i8eTPefvttrFmzBlFRUQgJCUFKSgq%2B/vpra5SdSVoa8P77sqXlM8/IGxpzyMu56dSpE/755x80atQISimkpKSgZ8%2BeGDBggHmKsnMMgAQAWLhwIT766KP0j1evXg0AMDywzFUp9dB995w7dw69e/fG%2BvXr4e7u/tDnb9yQxRQnT8oK3HtHZKT02stOkSLyDvLeUbWqHMWL5%2BEXzSVznJcHffLJJzh06BB27NhhvkLJpuX2%2BeLqCrz%2BOhAdPRZ79/6Gtm1XY%2BXK4oiKkkn1gwcD3bvLbT8/S1dvOY97XuLj4/HOO%2B9g1qxZKFasmLXK00xuni9paWkoUaIEZs6cCWdnZ9SpUwcXL17EuHHjNAmA06YBmzbJG/F58/J2pSUnuTk3f/zxB0aOHIlp06ahXr16OHnyJHr37g1fX18MGTLEvIXZIQZAAgC0a9cO9erVS/848d/mZbGxsfD19U2//8qVKw%2B9A7tn585wXLnyJGrXHgSlygLwh1IfY%2BvW8pg8%2BQaAnLsh%2B/ll7HsbGJhxeHtr127FHOflfp9%2B%2BilWrFiBbdu2oXTp0uYvmGxKsWLF4Ozs/NAIxeM8X8aPH49Ro0Zh06aNqFu3OG7dAubPlykPkZHA%2BPHApElAx47AF1/YVyuZ3J6XU6dO4cyZM2jbtm36fWn/XhooUKAATpw4gQoVKli2aCvIy/PF19cXLi4ucL4vaQUGBiI2NhZJSUlwteK%2BkpGR8lwEZLpN5crme%2By8nJshQ4agc%2BfO%2BOCDDwAA1apVw%2B3bt9G9e3cMGjQITjpvxMkASAAAT09PeN53TUkpBR8fH2zYsAG1atVCcjJw5kwSNm1KRKdOnTFunMzzOHdO/hsTA1y71hZA2xznKfn4yBy%2BSpWAihXlBaJyZbnt4WH53zO3HnVeAJmbsnXrVowZMybbx1FK4dNPP8Xy5cvxxx9/wN/f3%2BK1k/ZcXV1Rp04dbNiwAa%2B88kr6/Rs2bMDLL7%2Bc7feNGzcOI0aMwLp161C3bl0AMu/1449lvuDatdI2ZssWuSy8cKHss/rVV0DDhhb/tfItt%2BclICAAhw8fznTf4MGDER8fj8mTJ8PPnodB75OX50vDhg2xaNEipKWlpQeayMhI%2BPr6WjX8paRI%2B6w7d4DnngNCQsz7%2BHk5NwkJCQ%2BFPGdnZyhZAGveAu2RJktPyKakpip14YJSf/6p1K%2B/KjVunFK9ein11FPHlbPzPlWkSIIyGNKyXWF7/%2BHlpVT16kq1ayePUaHCVNW27Ux16JCs3HUEo0ePVkajUS1btkwdPnxYvfnmmw%2B1gWnevLmaOnVq%2Bsc9e/ZURqNR/fHHH%2BrSpUvpR0JCgha/gtWxDYyLmjNnjoqIiFB9%2BvRRHh4e6syZM0oppTp37pxpFeOYMWOUq6ur%2Bu233zI9V%2BLj4x967H37lHrjjcytjpo1U2rTJmnDYctye14e5KirgHN7XmJiYlThwoXVJ598ok6cOKFWrVqlSpQooUaMGGHVuocPl%2Bef0ahUTIxlfkZuz83QoUOVp6en%2BuWXX9Tp06fV%2BvXrVYUKFdQbb7xhmQLtDAOgTqSmKnXmjFJr1yo1aZJSISFKtW6tVOXKmfuQ5XQYDImqVKlE1aSJUm%2B/rdSAAUoVLTpIvfnmQnXwoFI3bjz8cy3VBkZLaWlpaujQocrHx0e5ubmpJk2aqMOHD2f6mrJly6qhQ4emfwwgy%2BOnn36ybvEa0XMAVEqpsLAwVbZsWeXq6qpq166dqf1P06ZNVZcuXdI/Llu2bJbPlfufTw%2BKilLqww%2BVcnHJ%2BPfaqJFSGzfadhDMzXl5kKMGQKVyf1527dql6tWrp9zc3FT58uXVyJEjVUpe%2Blzl0Z490sMSUGrBAsv%2BrNycm%2BTkZDVs2DBVoUIF5e7urvz8/NTHH3%2BsbmT1x0qHuBWcA1IKOH0a2LkT2LsX%2BPtv4NAh2ZYqO05OQKlSQJkyGUfp0nL4%2Bcl/ixfn3qWUN3rdCs7a7u0uMmtWxh7ETZoAI0YAjRtrWxs5poQE2R4zMlL2uF68mFtk2gsGQAeRkCB7jq5aBWzYAJw///DXuLjI3LuAgIx5d%2BXLA/7%2BEv5cXKxfN%2BkDA6B1XbwIjB4tbWSSkuS%2B1q2BUaPkjzWRufTsCcyYAZQsCRw%2BDDh4a1OHwgBo5/7%2BGwgLA5YsyTzC5%2BIC1K0rfZjq1AFq1pTQx5BHWmAA1Mb588C33wI//iiT9AFphD5ihLz5I8qPVauAewuzN2wAzND7n6yIAdBOHTkiy%2B3Xrs24r2xZ4JVXZDVgo0aWbYhMlBsMgNo6dQr4%2BmvZUQeQN4IhIcCQIRyxobyJjZXWQ//8A/TtC0ycqHVFlFsMgHYmLU22OBs2TN7ROzvLvIuePSX0ce4F2ZKwsDCEhYUhNTUVkZGRDIAaO3AA%2BPJLGa0BgCeeAIYOlfYyVuwYQnYuLQ146SUZgKheHdizB3Bz07oqyi0GQDuSmgp06SI9vwCgfXtpBusA/U/JwXEE0LasXy9bdN1rrVe5sozgcItUehyTJ8tev%2B7uwL595tnrl6yPazpt3cWL8pa9UiXEF/FDm4VvooHzbsyZAyxfzvBHRLnXqpWMBs6cKXtqR0bKiE6bNrI9I1F2Dh7M2O1j/HiGP3vGEUBbFhkpPRwuX850d5qTM5x%2Bng%2B89ZZGhRHlDkcAbVdcnCwKmTwZSE6WS8H9%2BwODBgGFCmldHdmShARZVHj8uCz%2B%2BP13TjuyZwyAtqxlS2Djxqw/5%2BEBXLgAGI3WrYkoDxgAbd%2BJE3JZ73//k4/LlgWmTs1Y5UnUvbv0mPT1ld6yxYppXRHlBy8B26qzZ4FNm7L//O3b0nGTiMgMqlQB1qwBli2TRvBnzwLt2klngaz6ipK%2BLFki4c9gABYsYPhzBAyAtur8ednSIyfnzlmnFiLSBYNBAl9EhEw9LlAA%2BO9/gcBAGQ1MTdW6QtJCdDTw4Ydye%2BBAoHlzbesh82AAtFVlyjx6coW/v3VqISJd8fCQnUQOHADq15cm8716SaupiAitqyNrSkoCOnUCTCagQQNg%2BHCtKyJzYQC0VX5%2BsndTdjw9gY4drVcPEelO1arAjh2y25CnJ/DXX7KV3IgRsmCEHN9XX0mfvyJFpJF4gQJaV0TmwgBoy6ZNkyD4AOXiAsybBxQurEFRRKQnTk7SKDoiQtrEJCXJDiLPPJPRR5Ac06pVwIQJcvunn2RhEDkOBkBbVq6cbPb7zTdQNWrgbMEqmI1uCKm3H6r9K1pXR0Q6Uro0sHKlLAAoWlRemurUAUaNythnmBxHTIxsPAAAvXsDL7%2BsbT1kfmwDY0eOHpUX3MRE4Jtv5F04kT1gGxjHEhsLfPQRsGKFfPzMM8D8%2BUClStrWReaRlAQ0bSqX/OvWBXbu5FaBjogjgHbkqadkJR4gG7tPn65tPUSkTz4%2Bsjp47lzAy0uCQs2awA8/PLp5Adm%2BAQPk/%2BkTT0j7F4Y/x8QAaGc%2B/FCW4QMyL2f0aL7gku0KCwtDUFAQgoODtS6FzMxgkEuEhw9LW5CEBKBHD7lU%2BM8/WldHebVsGfDdd3J77lw2m3BkvARsh5SSEDhmjHzctausF3F317YuouzwErBjS0sDJk2S16WkJBkhnD9fNjMi%2BxEVJZd8TSbgs89kr19yXBwBtEMGg4z8TZ4sK/R%2B%2Bkl6dZ04oXVlRKRHTk5Av37SLiQoSOYItmolzaTZLsY%2BJCQAr70m4a9RIyA0VOuKyNIYAO1Yr16yb2exYkB4uPTnmjpV3o0TEVlbjRrA3r1yKRgAxo4FGjcGzpzRtCx6BKWAnj1lf98SJYBffwVcXLSuiiyNAdDOtWwp4a9FC%2BDOHQmFTZoAR45oXRkR6VGhQrJAbelSWUSwe7e8Of39d60ro%2BzMnCmX7J2cZIv5kiW1roisgQHQAZQqBaxbJ936CxeWJfu1askcjrg4rasjIj3q0EG2kqtXD7h5E2jfHujfn5eEbc3u3cCnn8rt0FDg2We1rYeshwHQQdzr1n/0qLzQpqQAEydKX64ZM/iiS0TWV64csG2bzA8EZFeJ5s2Bixfeh5EMAAAgAElEQVQ1LYv%2BdeUK8Oqr8vehQwfg88%2B1roisiQHQwZQpAyxfDqxdC1SpIu0YevaUPT2XLmXLGCKyLldXCX7LlknPwB07gNq1JRiSdpKTgTfeAC5ckL8VP/0kCwxJPxgAHVTr1tKfa8oUWSQSGSkrvOrWBdasYRAkIut65RVg3z6gWjXg8mUZCZw0ia9FWvn8c2DrVsDTUwYN2J1JfxgAHZiLi8ztOHVKdg4pXFj272zTRtrGrF3LF18isp5KlWSHibffBlJTgb59gc6dZQEbWc/PP0sbMUAWfwQGalsPaYMBUAe8vIDhw4HTp2USdsGCMvH3xReBp5%2BW/TwZBInIGgoVkgAyaRLg7AwsXCh9586d07oyfdi3T3aUAmQ/%2Bfbtta2HtMOdQHTo8mVg3Dhp1ZCQIPdVqwZ89RXw%2BuvyokxkTtwJhLLyxx/ymnP1qvSfW7YMaNhQ66ocV2wsEBwMnD8PvPSStOZx4jCQbvF/vQ55e8sWP9HR0qm/cGGZL/jmm0BAgPSESkzUukpyBNwLmHLSrJmMSNWoIStSn31W9p8l80tMlBW/58/Loo8FCxj%2B9I4jgIQbN2QHkSlTgGvX5D5fX2nd8NFHMkmYKD84Akg5uX0b6NJFOhUAskAhNJRXI8xFKeCDD4AffwSMRtmyr3JlrasirTH/E4oUkUUiZ89K78BSpYBLl%2BRFuEwZYPBgeXdORGQJHh7AkiUyJw2QKSqvvirBkPJv8mQJf05Oss0bwx8BHAGkLCQlyeWBsWOBEyfkPnd34P33ZRGJv7%2B29ZH94QggPa5Fi%2BS1JjFR%2BgWuXMmtyfLjf/%2BTzg9pafIGv29frSsiW8EASNlKS5NJwqNHyyUDQC7JvPGGzB2sUUPb%2Bsh%2BMABSbuzaBbz8siwO8fOT3qVVq2pdlf2JiJCWXyaThOrZs9nsmTLwEjBly8lJmrf%2B9ReweTPQqpX07vrlF6BmTXlXuWOH1lUSkaNp0EBed6pUkfYwDRvKaxA9vqtXgbZtJfw1bixdHxj%2B6H4MgPRIBoOszlu3ThpJd%2Bwo4XDNGnlhadQIWL2avQSJyHwqVJCRwMaNJcS0bi09A%2BnREhPlzfvp00D58tJex9VV66rI1jAAUq7UqgUsXixzA7t3lxeVnTulp1StWjLBODVV6yqJyBEULQqsXy/TTpKTgXfekQUifLOZvXsrfnfskE0AVq2S7UCJHsQASHlSsSLwww/SS7B/f%2BklePAg0KkTEBQkG4snJ2tdJT1IKYVhw4ahZMmSKFiwIJo1a4ajR4/m%2BD3Dhg2DwWDIdPj4%2BFipYtI7d3eZdnJv8cIXX8hrTlqatnXZqm%2B/lUV8zs7Ab79xmzfKHgMg5UvJkvKO/OxZYNgwecceGSkTjitWBKZNA%2B7e1bpKumfs2LGYOHEivv/%2Be%2Bzduxc%2BPj5o2bIl4uPjc/y%2Bp556CpcuXUo/Dh8%2BbKWKiWTKycSJ8loDyO0uXfgm80ELFgBDh8rtadOAli21rYdsGwMgmUXRovLCc%2BaMtI/x9gZiYoCQEJmDMmlSxrZzpA2lFCZNmoRBgwahQ4cOqFq1KubNm4eEhAQsWrQox%2B8tUKAAfHx80o/ixYtbqWqiDP37A/Pny%2BjWggUyz%2B3OHa2rsg1bt8obb0B6uHbvrm09ZPsYAMmsPD3lxSc6WnYX8fOTptJ9%2B0r/wPHj2dxVK9HR0YiNjUWrVq3S73Nzc0PTpk2xa9euHL83KioKJUuWhL%2B/Pzp16oTTp09bulyiLHXuDKxYARQsKIvPnn8eiIvTuiptHTsGtG8vI6KvvSatu4gehQGQLKJgQeCTT4CTJ2WuYLlyspvI559LEBw7Frh1S%2Bsq9SU2NhYA4O3tnel%2Bb2/v9M9lpV69epg/fz7WrVuHWbNmITY2Fg0aNMC1e/sGZiExMREmkynTQWQuL74oi0OMRmD7dqB5c2l7okeXLgEvvADcvCk9/%2BbP5x6/9Hj4NCGLcnWVSxGRkbIVUYUKwD//SCNpf3%2BZ08MRQctYuHAhChcunH4k/zthyvBAMzCl1EP33e%2BFF17Aq6%2B%2BimrVqqFFixZYvXo1AGDevHnZfk9oaCiMRmP64efnZ4bfiChDo0bAli1A8eLSnqppU%2BDiRa2rsq74eOnHevYsUKlSxsgo0eNgACSrcHEBunYFjh8H5s6VIHj1qqzo8/cHJkzgHEFza9euHcLDw9OPYv/2gnhwtO/KlSsPjQrmxMPDA9WqVUNUVFS2XzNw4EDExcWlH%2BfOncvbL0GUg1q1gG3bZP/yiAgJgTExWldlHfcu9x44ICF47Vq2e6HcYQAkqypQQFbvHT8urWLKl5cRwf79JRROmcJVw%2Bbi6emJihUrph9BQUHw8fHBhg0b0r8mKSkJW7duRYMGDR77cRMTE3Hs2DH4%2Bvpm%2BzVubm7w8vLKdBBZQkCAXAYuV06mnDRpIg2QHVlamvT6W78eKFRI5kJWqKB1VWRvGABJEwUKAO%2B9J0Fwzhx58Y6NBXr3zugxmJSkdZWOxWAwoE%2BfPhg1ahSWL1%2BOI0eO4L333kOhQoXw1ltvpX/dc889h%2B%2B//z794/79%2B2Pr1q2Ijo7G7t278dprr8FkMqFLly5a/BpED/H3lxBYqZJcDm3aVMKgoxo4MGM19H/%2BAwQHa10R2SMGQNKUi4u0LjhxApgxAyhdGrhwAejRQ97Zz5vHnUXM6YsvvkCfPn3w8ccfo27durhw4QLWr18PT0/P9K85deoUrt43o/78%2BfN48803UaVKFXTo0AGurq7466%2B/ULZsWS1%2BBaIslS4trVACAoDz54FmzYAcZinYre%2B%2Bk0V0ADB7tiyIIcoLg1LcVIdsx927wKxZwKhRMiIIyAv6t98Cr77KzcztlclkgtFoRFxcHC8Hk0VdviyrgiMipFH9H3/IyKAjWLBA2uAAQGgoMGCAtvWQfeMIINkUd3fg00%2BBU6ekl1XRonKZ%2BPXXgbp1gXXruA8oEWXP21tWBz/1lKwKfvZZeT2xd2vWyEI6AOjTRzopEOUHAyDZpEKF5AXu9Gng669lr%2BG//wZat5YX9D//1LpCIrJVJUoAmzbJvuQXLshrxpkzWleVdzt3yorflBTg7belawKvhlB%2BMQCSTTMageHDJQj27Qu4uck8nwYNgHbtgCNHtK6QiGyRtzeweTNQpQpw7pxcFj5/Xuuqcu/gQen1d%2BeOzPf76Sc2eibz4NOI7ELx4rIBfFQU0K2bvACuXAlUry5tZc6e1bpCIrI190JghQqyPeVzz8kcQXsRFQW0aiVb3TVqJCt%2BXVy0roocBQMg2RU/P1n5dvSoLApRStohVK4sI4R63Q6KiLJWsqSEwDJlZEeiVq2AGze0rurRzp0DWrSQLTRr1pQ3vIUKaV0VORIGQLJLAQHAb78Be/bIpZ2kJGDSJGksPXIkt5cjogxlysicQB8f4NAhuZRqy3uRX74s4S8mRt7crlsHPPGE1lWRo2EAJLsWHAxs3CgvkLVqyd6YgwdnNJNOSdG6Qn0LCwtDUFAQgtmpljRWsaLsnFGkCPDXX3IFwRabzV%2B/LqOUkZESXDdulEUtRObGPoDkMNLSgMWLJQBGR8t9VapIv6z27blqTkvsA0i2YvduuWqQkAB07AgsWmQ7iyri42Xkb88eGa3cvl2CK5El2MjTnij/nJyAt96SvoGTJ8vG6CdOAB06AA0bAjt2aF0hEWmtXj1g%2BXLZjvLXX4F%2B/Wyjt2hCAvDSSxL%2BihYFNmxg%2BCPLYgAkh%2BPqCvTqJc1fBw%2BWidN//gk0biwjgcePa10hEWmpVSvZZhKQN4sTJmhbz927wCuvANu2AV5ecqm6alVtayLHxwBIDsvLS7aQi4oCPvxQRgh//11eWHv0yNhqjoj05623gPHj5fbnnwNLlmhTR1IS8MYbEvo8PIC1a4E6dbSphfSFAZAcXsmSwMyZ0jS6XTsgNVUWiFSsCAwbZturAYnIcvr1k6sFAPDuu9bfYejezh4rV8o2mCtXSpN7ImtgACTdCAyUEcBt22Qe0O3bsstIxYrAjBlAcrLWFRKRNRkM0mC%2BXTsgMRF4%2BWXrbRmXmip7%2B/72m0xbWb5ctqwjshYGQNKdxo3lnf6SJbJDwOXLQM%2BeQLVqEhBtYUI4EVmHs7OsBK5ZE/jnHwmBlr4qkJYm01AWLJDFKEuWyD7nRNbEAEi6ZDAAr78OREQAU6ZkrBhu3x5o0kT6hBGRPnh4ACtWyNZxhw7JyJyl3ggqJbsWzZ4t85IXLJDQSWRtDICka66uwKefAidPAgMHyjycHTuA%2BvVlYvbJk1pXSETW4OcHLFsme%2B3%2B9pvlVgYPHixvOgHgxx%2BlFyGRFhgAiQAYjcCoUbJiuGtXGSH8z3%2BAoCCgd2/uMUykBw0ayJaSADBgALBrl3kff%2BxYeZ0BgLAwoEsX8z4%2BUW4wABLdp3RpeVd%2B8KDMyUlOlnfrFSrIjiIJCVpXSESW1LMn8OabskjjrbeAuDjzPG6XLsCXX8rt0aOBjz82z%2BMS5RUDIFEWqlWTflwbNsgewyYT8NVXsjH7Tz/JHwcicjwGg3QFKF8eOHtWWsXk16BBwPz5crtt24wgSKQlBkCiHLRoAezbB/z8s2zMfuEC8P77EgrXruWK4UcJCwtDUFAQgoODtS6F6LF5eclOIQaDXBHYsiXvj/XzzxmXfStVAv77X/PUSJRfBqX4J4zocdy9C3z/PTByJHDzptz37LMyr6duXW1rs3UmkwlGoxFxcXHw8vLSuhyix/Lxx8D06cAzQSbsWJ8AZ98SsnT3MR0%2BLO1l0tKk00BMDFCwoAULJsoFjgASPSZ3d6B/f9lj%2BLPPZAXxli1AcLDMGTp1SusKicicQjuGY22BttgRUQTOpX0Bf39g3DhJdI%2BQnCwtpdLS5LXi778Z/si2MAAS5VLRorKHaGQk8M47cplo8WLZaaR3b2kmS0R27u%2B/YXypMVqnrIIz/g18MTHAF18AH3zwyG9/442MKwXLl0ubGSJbwkvARPkUHi6Tutevl489PeVvRN%2B%2B0mCWeAmY7NDzz2f8o87K33/LZOAsHDsmLaQA2et3wQIL1EeUTxwBJMqnmjWBdetkxXDt2kB8PDBkCPcYJrJb//wj/6BzsnBhtp%2B61%2BKlYEFg7lzzlUVkTgyARGbSogWwd6/sK%2BrvD8TGSk%2Bxp56SptIcayeyEybTo//B5tAg8F4D6S5dZK9fIlvEAEhkRk5OsiDk%2BHFpIF28uOwu8sYbwNNPA5s2aV0hET2Sn58s281JzZpZ3n39OpCUJLc//dTMdRGZEQMgkQXc22P41Clg6FCgcGHpJ9iiBdCypdwmIhvl6gp075795594AujcOctPXb6ccbtCBTPXRWRGDIBEFuTpCQwbJkGwVy/ZaH7jRmkd8/rrwIkTWldIRFkaOhRJL7788P1Go3RzzmYxU7lyGbf37rVMaUTmwABIZAUlSgCTJ0vg69xZWsf89pusFOzWTbpLEJHtSHV2xWvO/0UzbMEvXh8hteNbwMSJQHQ00LRptt9XsGDG6v8ffrBSsUR5wDYwRBo4ckT2B12xQj52dQV69JD9hr29ta3NEtgGhuyJUjKFIywMcHMDdu4E6tR5/O9/4QXgf/%2BTqR8mk7zhI7I1HAEk0kDVqsDvvwN//inbySUlyaKR8uUlBN64oXWFRPqkFNCvn4Q/gwGYPz934Q%2BQ7SEB4NYtGTQkskUcASTSmFIyL3DwYGDPHrnPaJTt5nr3znaqkV0ICwtDWFgYUlNTERkZyRFAsmkpKdK6afZs%2BfiHH3JeC5KT6tVlL2APD9kRhO1gyNYwABLZCKXkkvCQIfKHAwCefFJ2FQkJse9dRXgJmGzdrVtAp07A6tXSzmnWLOD99/P%2BeIcOATVqyO1u3TJCJZGtYAAksjFpacCSJdI%2BJjJS7itRAhgwQOYJ2uOG8gyAZMvOngXatZPQ5u4O/PIL0L59/h%2B3TRtgzRq5lHzsGFClSv4fk8hcGACJbFRKiuw29c03wOnTcp%2BPDzBwIPDhh/YVBBkAyVZt3gx07AhcvSoLsH7/HahXzzyPnZAAFC0KJCZKe5joaPM8LpE5cBEIkY0qUEC2kjp%2BXC5HlS0r28v17i0NZqdMAe7c0bpKIvuUlgaMGSON2a9elX289%2B41X/gDgEKFgGnT5PaZM7Lyn8hWcASQyE4kJcnG8iNHZvQN9PEBvvxSJqoXKqRpeTniCCDZkqtX5c3VmjXycZcuwPTplhtVr1dPFng5OQFHjwIBAZb5OUS5wQBIZGeSkoCffgJGjcoIgt7esmq4Z0/pPWZrGADJVmzeLM3YL16U%2BX5TpgAffGDZXn03b8qbtcREWR0cHs7egKQ9XgImsjOursBHHwFRUdKmolw52X/0iy/k9siRQFyc1lUS2ZbERPk30qKFhL%2BAAOCvv2Q%2BraXD2BNPAD/%2BCDg7y0KTuXMt%2B/OIHgdHAInsXHIysGCBjAiePCn3eXkBn3wC9OkDFC%2BubX0ARwBJW4cOyajfoUPy8YcfAt99Z/3WSqNHyyKuwoVlFLBCBev%2BfKL7MQASOYiUFGkfM3IkEBEh9xUsKH/sPvsMKFNGu9oYAEkLycmyK8fw4XK7WDFZUGWOFi95kZoKNG8ObNsm8wJ37GCDaNIOLwETOYgCBYC33pIm0suWAXXryirhKVNkpOG99zKCIZGjCw%2BXkDV4sIS/l1%2BWPbi1Cn%2BAXAKeP192%2Btm9W1o8EWmFAZDIwTg5Aa%2B8IqsO16%2BXvYZTUoB584CnnpKGtzt2yM4jRI7mzh1pml63LnDgAFCkCPDzz8Dy5bJYSmtlywIzZsjtkSPl3yKRFhgAiRyUwSA9zjZvltGGDh3kvpUrgcaNgYYNZaQwNdVyNYSFhSEoKAjBwcGW%2ByFE/1q3DqhaVfr7paYCr70mo97vvGNbq247dQLefVd6Eb79tqwSJrI2zgEk0pETJ4Dx4%2BUyVFKS3FehgiwW6drVcpPiOQeQLOncOaBfP%2BC33%2BTj0qWB77%2BXy762Kj4eqFlTdvnp2FG2n7OlkEqOjyOARDpSpYpMgj97FvjqK9mm6tQp4NNP5Y/mgAHyx5TIHiQmyur3gAAJf87O8mYmIsK2wx8AeHoCixZJzb/%2BKlM0iKyJI4BEOnb7tvQkmzQpo4WMszPw6quy5Vz9%2BuYZleAIIJmTUsB//wv075%2BxT3bDhkBYGFCjhra15daoUbJFnIeHLFypWFHrikgvGACJCGlpwKpV0hvtjz8y7q9TR0YHO3aUXRPyigGQzGXfPgl%2BW7fKxyVLypy/t9%2B2z0uoqanAc8/J7xMcDOzcCbi4aF0V6QEvARMRnJxkdfCWLTIK0bUr4OYG7N8v7WP8/OTy8JkzWldKenX6tLQ5Cg6WsOTuLiNnJ07Y3iKP3HB2llXKTzwB7N0LDB2qdUWkFxwBJKIsXb0KzJ4NTJuWMS/QYABefFH2HG7dWv54PQ6OAFJeXbok7VJmzpR%2BfoAEvpEjtW1ubm6//Qa8/rr8G9u8GWjWTOuKyNExABJRjlJS5PJwWBiwcWPG/WXKyC4jXbsCpUrl/BgMgJRbV64A48bJ8%2B7OHbmvVSvZTq1WLW1rs5Ru3WTPYD8/4OBB6WFIZCm8BExEOVqxYhmmT38eBw4UA1AZ77xzBUWLAjExwJAhEgTbtQN%2B/z1jhCZdaqo0G3z/ffl4/Hj5y06UjcuXgc8/B/z95ely544sRtq8Wfr8OWr4A4DJk2URyLlzwEcfsVk7WRZHAIkoRz///DOio6NRsmRJfPjhhzhw4ACqVKmJpUvlstz27Rlf6%2BMjDW7few8I9LsFvPACsGMHTACMAOIAGQFcsQJo2lSbX4hs0tmzEvhmzwbu3pX76taVfXxfeMF%2B5/jl1t69QIMGMvI%2Bdy7QpYvWFZGjYgAkosdy5swZ%2BPv748CBA6hZs2b6/cePA3PmSB%2Bzf/7J%2BPqlJXqiwxXZ8ypTAASkAeG5c0ChQlb8DcgWHTwITJggjZBTUuS%2BevVkdPnFF/UT/O53rzVM4cJyfsqX17oickS8BExE%2BRIQIHO1LlyQq71t2wJPOJnw/JX52X/T9evyF590KS0NWLNGtiqsWVNWwaakAM2byzzTP/8E2rTRZ/gDgC%2B/BBo1Am7dAjp3zgjGRObEAEhEZuHiArzyilzdjVh9Ah5IyPHr0w4dsVJlZCtu3gSmTJE3DW3aSNhzcgLeeEMufW7aJD3x9Br87rnXGsbLC9i1CwgN1boickQMgESUbuHChShcuHD6sf3%2BCX658Mu6RY/8mrGzi6JnT5nczxEOx6WUhLsPP5TV4r17A1FRgNEo%2B/eeOiVbodWtq3WltqVcOdnPGJB5kHv3aloOOSDOASSidPHx8bh8%2BXL6x6VKlULBggUBZD8HMCuJiYlwbtECBXbsAPDwHMBUOKESohANmdxUvDjQvj3QoYNcBnR1tcAvR1Z17Zpc5Z89W%2Bax3fPUU0BIiFzaLFxYu/rsgVJAp07AkiVA5crAgQOcNkvmwwBIRI8lNwEQgGwj0qwZcOvWQwEw7YsB2NA8FP/5D7B8uUwJvMfLSyb/v/yyNJt%2B4gmL/DpkAYmJwNq1cvly1SogKUnud3OT/aU/%2Bgho3JiXeHPj%2BnWgWjXg4kXg44%2BlLyKROTAAElGOrl%2B/jpiYGFy8eBFt2rTB4sWLUaVKFfj4%2BMDHxyfnbz58GPj2W5iWLYMxNRVxQUHw%2Bvxz6RPzr%2BRk2X946VLpJRgbm/HtBQpIYHjpJQmFVaowPNialBT5//frr/L/8MaNjM/VrCktIN9%2BWxZ%2BU95s2CBNsAEJ2K1ba1sPOQYGQCLK0dy5c9G1a9eH7h86dCiGDRv2WI9hunYNxmLFHrkTSFoasHs38N//AitXAseOZf58uXLA88/L8eyzHB3USmKiLNhYvlz%2BX129mvE5X1/Zs7dzZ6BGDe1qdDS9egFTp8r5PXKEgZryjwGQiCwur1vBnTollxJXrwa2bs24pAjI6tGnn5ZVo88%2BK81z/52uSBZw%2BbKMPq1aJTty3LqV8bknn5RLvB07Sn/vx90jmh7fnTuyC8qJE3KeFy/WuiKydwyARGRx5tgL%2BPZtYMsWCR/r1wORkZk/7%2BoqgbBJE7lsXL%2B%2BrDSlvLl7V1qQbNgg5/vvvzN/3tc3Y%2BFOs2ZyuZ4sa%2B9eeV6npsoCm06dtK6I7BkDIBFZnDkC4INiYuQy5KZNMgftwoXMnzcYgKpV5Q9mvXpyBARwdCo7t2/L5fft22W0ddcuudR7v9q1pX9f27ZAnToyCkvWNWyYtIUpUkQuBZcsqXVFZK8YAInI4iwRAO%2BnlFwu3roV2LYN2LEDOH364a/z8JAQU7u2XE6rWRMIDNRf25nUVLmUuHcvsGcP8Ndf0qolNTXz1/n6yiX2li1l3qW3tzb1UobkZHlTs3%2B/LIxatYoLoyhvGACJyOIsHQCzEhsrW4r9%2BaeMbO3fL6NcDypQQFYXV60qPeoCAuSoWNH%2B5xQqJfszHzsmo0WHD0vQO3QISMhio5bSpeXyeZMmclmXq65tU0SEvIlJTJQ%2Bi926aV0R2SMGQCKyOC0C4INSUyUI7d8vDXUPHJAwFBeX9dcbDBKIKlYEypeXFchlywJlysj9pUoB7u5W/RWylJQkl79jYoCzZ2Xk89Qp4ORJGeW7vy3L/Tw8ZBQ0OBh45hkZVfLzs27tlHfjxwOffw54ekqwL1tW64rI3jAAEpHF2UIAzIpSwLlz8gf06FEZWTl%2BXILTzZuP/v4nnpDLpCVKyG4mTz4p7TmKFJEFKF5esttFoUIymujuLnsmFyggcxGdnKSGtDTpp5ecLKM6d%2B/KCN2tW3LExUmQu35ddti4ckVW5cbGyghfTgwGCQdVq8pRo4Zc%2Bq5UifMh7VlqqozU7tolu%2Bds2MA5mZQ7DIBEZDFhYWEICwtDamoqIiMjbS4AZkcp6W0XFSWjaadPA2fOyAjbuXMy4nbnjtZVZnBzk9G7smUBf38ZsaxYUbYPq1SJ24c5qqgoCfR37gDTpgE9e2pdEdkTBkAisjhbHQHMK6VkhPDSJRmFu3JFRuKuXZORuhs3ZNTOZJIRvIQE%2BSOdmCiXbFNSZNQvLU1G6AwGGRV0cZEw5%2B4uoc3DQy7xGY0y2li0qIwyFi8uCzJ8fGQVaLFinKunV1OmAL17y3Pl8GF5A0D0OBgAicjiHC0AEtmKtDRphL5tm/x340ZeCqbHw6cJERGRnXJyAn78UUaMt2wBZszQuiKyFwyAREREdqxCBWD0aLn9xRcyX5XoURgAiYiI7FxIiPRwvH0b%2BOADmadKlBMGQCIiIjvn5ATMmSPthjZtkgbRRDlhACQiInIAlSoBI0bI7f79gfPnta2HbBsDIBERkYPo3RuoV09aEPXowUvBlD0GQCIiIgfh7Cyrgl1dgdWrgV9%2B0boislUMgERERA4kKAgYPFhu9%2Br16O0CSZ8YAImIiBzMl18C1arJ7jR9%2BmhdDdkiBkAiIiIH4%2Boqq4KdnIBFi4A1a7SuiGwNAyARWUxYWBiCgoIQHBysdSlEuhMcDPTtK7d79ADi47Wth2wL9wImIovjXsBE2rh9Wy4FR0fLfMDJk7WuiGwFRwCJiIgclIcH8MMPcnvqVGD3bm3rIdvBAEhEROTAWrYEOneWnoAffggkJ2tdEdkCBkAiIiIHN3Ei8OSTwOHDwIQJWldDtoABkIiIyMEVKwZ8953cHj4cOHVK23pIewyAREREOvDOO8BzzwF37wI9e3KbOL1jACQiItIBgwGYMQNwcwM2bOA2cXrHAEhERKQTFSsCQ4bI7b59gRs3tK2HtMMASEREpCOffw4EBgJXrgADBmhdDWmFAZCIiEhHXF3lUjAAzJwJ/PmntvWQNhgAiYiIdKZJE6BrV7ndoweQkqJtPWR9DIBEZDHcC5jIdo0dCxQtChw6xC3i9Ih7ARORxXEvYCLbNGcO8MEHsmXc8eNA6dJaV0TWwhFAIiIineraFWjQAHaIeL4AAA3zSURBVLh9G%2BjTR%2BtqyJoYAImIiHTKyQmYPh1wdgaWLgXWrdO6IrIWBkAiIiIdq14d6NVLbn/yiewUQo6PAZCIiEjnhg0DfH2BkyeBceO0roasgQGQiIhI57y8gIkT5faoUUB0tLb1kOUxABIRERE6dgSefVYuAXNBiONjACQiIiIYDMD33wMFCgArVgBr1mhdEVkSAyAREREBAIKCMkb/evXighBHxgBIRERE6b7%2BWhaEnDoFTJigdTVkKQyARERElM7TExg/Xm6PHAnExGhbD1kGAyARERFl8uabQOPGwJ07QP/%2BWldDlsAASEQWExYWhqCgIAQHB2tdChHlgsEATJ0qO4X85z/Ali1aV0TmZlBKKa2LICLHZjKZYDQaERcXBy8vL63LIaLHFBICTJsGVK0KHDggK4TJMXAEkIiIiLL07bdA0aLAkSPAjBlaV0PmxABIREREWSpaFBgxQm5//TVw9aq29ZD5MAASERFRtrp3B2rUAG7cAIYM0boaMhcGQCIiIsqWszMwebLcnjkTOHRI23rIPBgAiYiIKEdNmwKvvQakpclOIVw%2Bav8YAImIiOiRxo0D3N2lJczy5VpXQ/nFAEikI8uWLcPzzz%2BPYsWKwWAwIDw8/JHfM3fuXBgMhoeOu9wklEhXypXLaArdvz/3CbZ3DIBEOnL79m00bNgQo0ePztX3eXl54dKlS5kOd3d3C1VJRLZqwACgZEkgOjpjXiDZJ7Z0JNKRzp07AwDOnDmTq%2B8zGAzw8fGxQEVEZE88PIDQUKBLF2kP8957gLe31lVRXnAEkIge6datWyhbtixKly6Nl156CQcOHMjx6xMTE2EymTIdROQY3nkHCA4Gbt0CBg/WuhrKKwZAIspRQEAA5s6dixUrVuCXX36Bu7s7GjZsiKioqGy/JzQ0FEajMf3w8/OzYsVEZElOTsB338ntOXOAgwe1rYfyhnsBEzmohQsX4qOPPkr/eO3atWjcuDEAuQTs7%2B%2BPAwcOoGbNmrl63LS0NNSuXRtNmjTBlClTsvyaxMREJCYmpn9sMpng5%2BfHvYCJHEjHjsCSJUDz5sDGjYDBoHVFlBucA0jkoNq1a4d69eqlf1yqVCmzPK6TkxOCg4NzHAF0c3ODm5ubWX4eEdmmMWOA338HNm8GVq0C2rbVuiLKDV4CJnJQnp6eqFixYvpRsGBBszyuUgrh4eHw9fU1y%2BMRkX0qV06aQgPA558DycmalkO5xABIpCPXr19HeHg4IiIiAAAnTpxAeHg4YmNj07/m3XffxcCBA9M/Hj58ONatW4fTp08jPDwc3bp1Q3h4OHr06GH1%2BonItgwcCBQvDpw4Afzwg9bVUG4wABLpyIoVK1CrVi20adMGANCpUyfUqlULM2bMSP%2BamJgYXLp0Kf3jmzdvonv37ggMDESrVq1w4cIFbNu2DU8//bTV6yci22I0AsOHy%2B1hw4CbNzUth3KBi0CIyOJMJhOMRiMXgRA5oJQUoHp14NgxuRQ8dqzWFdHj4AggERER5VmBAhmhb/JkIJd95kkjDIBERESUL23aSDuYpCRg0CCtq6HHwQBIRERE%2BWIwAOPGyX8XLQL27dO6InoUBkAiIiLKt9q1ZZs4QOYCcoWBbWMAJCIiIrMYMQJwcwP%2B%2BANYvVrraignDIBERERkFmXKAL17y%2B0vv5QVwmSbGACJyGLCwsIQFBSE4OBgrUshIisZOBAoWhSIiADmzdO6GsoO%2BwASkcWxDyCRvkycCHz2GVCyJBAVBRQqpHVF9CCOABIREZFZhYTIXsEXLwKTJmldDWWFAZCIiIjMys1NFoQAwJgxwNWr2tZDD2MAJCIiIrN7802gZk3AZAJGjdK6GnoQAyARERGZnZMTMHq03A4LA86e1bYeyowBkIiIiCyiVauMLeK%2B/lrrauh%2BDIBERERkEQZDxijgzz8Dhw9rWw9lYAAkIiIiiwkOBl57TbaGGzRI62roHgZAIiIisqgRIwBnZ2DlSmDnTq2rIYABkIiIiCysShXg/ffl9oABMhpI2mIAJCIiIov7%2BmvA3R3YsQNYu1braogBkIiIiCyudGngk0/k9ldfAWlp2tajdwyARGQxYWFhCAoKQnBwsNalEJENGDAA8PICDh4ElizRuhp9MyjFK/FEZFkmkwlGoxFxcXHw8vLSuhwi0tC338rl4EqVgKNHARcXrSvSJ44AEhERkdX06QMUKwZERQHz5mldjX4xABIREZHVeHrKHEAA%2BOYb4O5dbevRKwZAIiIisqqePWVRyLlzwA8/aF2NPjEAEhERkVW5uwNDhsjtUaOA27e1rUePGACJiIjI6rp2BcqXB65cAaZO1boa/WEAJCIiIqtzcQGGDZPbY8cCcXGalqM7DIBERESkibfeAgIDgRs3gO%2B%2B07oafWEAJCIiIk04OwPDh8vtiROBa9e0rUdPGACJiIhIM6%2B%2BCtSoAcTHA%2BPHa12NfjAAEhERkWacnKQfIABMmSKLQsjyGACJyGK4FzARPY62bYG6dYGEBFkQQpbHvYCJyOK4FzARPcratcCLL0qPwOhowMdH64ocG0cAiYiISHOtWwP168vWcKNHa12N42MAJCIiIs0ZDBkrgmfMAC5e1LYeR8cASERERDahRQugYUMgMREIDdW6GsfGAEhEREQ2wWDIWBE8cyZw/ry29TgyBkAiIiKyGc8%2BCzRuDCQlcS6gJTEAEhERkc24fy7grFkcBbQUBkAiIiKyKc2aAU2acBTQkhgAiYiIyKYYDMCwYXKbo4CWwQBIRERENuf%2BUcAxY/7f3v2EWFX3cRz/3JBI1BlBDNKcNFrUBaHNuGphi2gTQiEmUq6MNq2KUCNrORFUFI30h2g1tEpo28JZuIhQZhUtFEQRaixa3Jkw9aq3xaXBBxoZn8f7nHvn%2B3rBgd/lzhy%2Byze/c885TU%2Bz%2BghAAGDotFrJu%2B/2119%2B6bmA95oABACG0tNPJ0891X8uoF3Ae0sAAgMzPT2ddrudycnJpkcBRtDtu4BffJHMzzc7z2rS6vV6vaaHAFa3hYWFjI%2BPp9PpZGxsrOlxgBHS6/XfDvLDD8nrrycffND0RKuDHUAAYGi1Wsk77/TXn32W/PZbs/OsFgIQABhqzz6bTE4mV64kH37Y9DSrgwAEAIZaq5UcO9ZfT08nf/zR7DyrgQAEAIbec88lTz6Z/Pln8vHHTU8z%2BgQgADD0Wq3k7bf7608%2BSTqdZucZdQIQABgJzz%2BftNv9%2BPv006anGW0CEFhWt9vN4cOHs3Pnzqxbty5btmzJwYMH84tH8gMNuO%2B%2B5K23%2BuuPPupfDua/IwCBZV25ciVzc3M5duxY5ubmcuLEiZw9ezZ79uxpejSgqBdfTB57rH8jyOefNz3N6PIgaOCunD59Ort27crFixczMTGxov/xIGjgXvrqq%2BTQoeShh5Lz55MHHmh6otFjBxC4K51OJ61WKxs3blz2b65du5aFhYX/OADulZdfTrZtS379Nfn666anGU0CEFixq1ev5siRIzlw4MAdd/KmpqYyPj6%2BdGzbtu3/OCWw2t1/f/Lmm/31%2B%2B8n3W6z84wiAQgsmZmZyfr165eOU6dOLX3X7Xazf//%2B3Lp1K8ePH7/jeY4ePZpOp7N0XLp0adCjA8UcOpQ8%2BGBy4ULyzTdNTzN6/AYQWLK4uJjLly8vfd66dWvWrl2bbrebffv25fz58zl58mQ2bdp0V%2Bf1G0BgEN57Lzl6NHniieSnn/p3CbMyAhC4o3/i79y5c5mdnc3mzZvv%2BhwCEBiEhYVkYqL/XMBvv01eeKHpiUaHVgaWdePGjezduzdnzpzJzMxMbt68mfn5%2BczPz%2Bf69etNjwcUNzaWvPZafz01ldjSWjk7gMCyLly4kB07dvzrd7Ozs9m9e/eKzmMHEBiU339PHnkk%2Beuv5Pvvk2eeaXqi0WAHEFjW9u3b0%2Bv1/vVYafwBDNLmzckrr/TXU1PNzjJKBCAAMNLeeCNZsyaZnU1%2B/LHpaUaDAAQARtrERPLSS/21XcCVEYAAwMg7fDhptZLvvkt%2B/rnpaYbfmqYHAAD4Xz3%2BePLqq8mjjyYPP9z0NMPPXcDAwLkLGGC4uAQMAFCMAAQGZnp6Ou12O5OTk02PAsBtXAIGBs4lYIDhYgcQAKAYAQgAUIwABAAoRgACABQjAAEAihGAAADFCEAAgGIEIABAMQIQAKAYAQgAUIwABAbGu4ABhpN3AQMD513AAMPFDiAAQDECEACgGAEIAFCMAAQAKEYAAgAUIwABAIoRgAAAxQhAAIBiBCAAQDECEACgGAEIAFCMAAQGZnp6Ou12O5OTk02PAsBtWr1er9f0EMDqtrCwkPHx8XQ6nYyNjTU9DkB5dgABAIoRgAAAxQhAAIBiBCAAQDECEACgGAEIAFCMAAQAKEYAAgAU40HQwMD1er0sLi5mw4YNabVaTY8DUJ4ABAAoxiVgAIBiBCAAQDECEACgGAEIAFCMAAQAKEYAAgAUIwABAIoRgAAAxQhAAIBiBCAAQDECEACgGAEIAFCMAAQAKEYAAgAUIwABAIoRgAAAxQhAAIBiBCAAQDECEACgGAEIAFCMAAQAKEYAAgAUIwABAIoRgAAAxQhAAIBiBCAAQDECEACgGAEIAFCMAAQAKEYAAgAUIwABAIoRgAAAxQhAAIBiBCAAQDECEACgGAEIAFCMAAQAKEYAAgAUIwABAIoRgAAAxQhAAIBiBCAAQDECEACgGAEIAFCMAAQAKEYAAgAUIwABAIoRgAAAxQhAAIBiBCAAQDF/A/Y9cpBCppSNAAAAAElFTkSuQmCC'}