-
g2c_curves • Show schema
Hide schema
{'Lhash': '788017017925358304', 'abs_disc': 884736, 'analytic_rank': 1, 'analytic_rank_proved': False, 'analytic_sha': 1, 'aut_grp_id': '[2,1]', 'aut_grp_label': '2.1', 'aut_grp_tex': 'C_2', 'bad_lfactors': '[[2,[1]],[3,[1,0,3]]]', 'bad_primes': [2, 3], 'class': '147456.e', 'cond': 147456, 'disc_sign': 1, 'end_alg': 'Q', 'eqn': '[[0,6,0,-5,0,1],[]]', 'g2_inv': "['10442615625/32','2558131875/256','-401375/1536']", 'geom_aut_grp_id': '[8,3]', 'geom_aut_grp_label': '8.3', 'geom_aut_grp_tex': 'D_4', 'geom_end_alg': 'M_2(Q)', 'globally_solvable': 1, 'has_square_sha': True, 'hasse_weil_proved': False, 'igusa_clebsch_inv': "['195','630','44910','108']", 'igusa_inv': "['780','18630','-380','-86843325','884736']", 'is_gl2_type': False, 'is_simple_base': True, 'is_simple_geom': False, 'label': '147456.e.884736.1', 'leading_coeff': {'__RealLiteral__': 0, 'data': '2.7082951445327918936334289580257056611982078102247', 'prec': 170}, 'locally_solvable': True, 'modell_images': ['2.180.3', '3.270.1'], 'mw_rank': 1, 'mw_rank_proved': True, 'non_solvable_places': [], 'num_rat_pts': 4, 'num_rat_wpts': 2, 'real_geom_end_alg': 'M_2(R)', 'real_period': {'__RealLiteral__': 0, 'data': '11.166308112396498088179986754', 'prec': 100}, 'regulator': {'__RealLiteral__': 0, 'data': '0.970166725572', 'prec': 47}, 'root_number': -1, 'st_group': 'J(E_4)', 'st_label': '1.4.E.8.3a', 'st_label_components': [1, 4, 4, 8, 3, 0], 'tamagawa_product': 4, 'torsion_order': 4, 'torsion_subgroup': '[2,2]', 'two_selmer_rank': 3, 'two_torsion_field': ['4.4.2304.1', [1, 0, -4, 0, 1], [4, 2], True]}
-
g2c_endomorphisms • Show schema
Hide schema
{'factorsQQ_base': [['1.1.1.1', [0, 1], -1]], 'factorsQQ_geom': [['1.1.1.1', [0, 1], 1]], 'factorsRR_base': ['RR'], 'factorsRR_geom': ['M_2(RR)'], 'fod_coeffs': [25, 0, 76, 0, -6, 0, 4, 0, 1], 'fod_label': '8.0.12230590464.4', 'is_simple_base': True, 'is_simple_geom': False, 'label': '147456.e.884736.1', 'lattice': [[['1.1.1.1', [0, 1], [0, 0, 0, 0, 0, 0, 0, 0]], [['1.1.1.1', [0, 1], -1]], ['RR'], [1, -1], 'J(E_4)'], [['2.0.4.1', [1, 0, 1], [0, '67/40', 0, '-11/40', 0, '3/40', 0, '1/40']], [['2.0.4.1', [1, 0, 1], -1]], ['CC'], [1, -1], 'E_4'], [['2.2.24.1', [-6, 0, 1], ['-9/4', 0, '11/20', 0, '-1/4', 0, '-1/20', 0]], [['1.1.1.1', [0, 1], -1]], ['RR'], [1, -1], 'J(E_2)'], [['2.0.24.1', [6, 0, 1], [0, '-43/10', 0, '1/20', 0, '-1/5', 0, '-1/20']], [['1.1.1.1', [0, 1], -1]], ['RR'], [1, -1], 'J(E_2)'], [['4.0.2304.2', [9, 0, 0, 0, 1], ['-9/8', '43/20', '11/40', '-1/40', '-1/8', '1/10', '-1/40', '1/40']], [['2.0.4.1', [1, 0, 1], -1]], ['CC'], [1, -1], 'E_2'], [['4.2.55296.1', [-6, 0, 0, 0, 1], ['-13/8', 0, '-9/40', 0, '-1/8', 0, '-1/40', 0]], [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], ['RR', 'RR'], [2, -1], 'J(E_1)'], [['4.2.55296.1', [-6, 0, 0, 0, 1], [0, '-107/40', 0, '11/40', 0, '-3/40', 0, '-1/40']], [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], ['RR', 'RR'], [2, -1], 'J(E_1)'], [['4.0.55296.2', [24, 0, 0, 0, 1], ['-13/8', '-107/40', '-9/40', '11/40', '-1/8', '-3/40', '-1/40', '-1/40']], [['2.2.8.1', [-2, 0, 1], -1]], ['RR', 'RR'], [1, -1], 'J(E_1)'], [['4.0.55296.2', [24, 0, 0, 0, 1], ['-13/8', '107/40', '-9/40', '-11/40', '-1/8', '3/40', '-1/40', '1/40']], [['2.2.8.1', [-2, 0, 1], -1]], ['RR', 'RR'], [1, -1], 'J(E_1)'], [['8.0.12230590464.4', [25, 0, 76, 0, -6, 0, 4, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0]], [['1.1.1.1', [0, 1], 1]], ['M_2(RR)'], [4, 0], 'E_1']], 'ring_base': [1, -1], 'ring_geom': [4, 0], 'spl_facs_coeffs': [[[1440, 0, 960, 0], [0, -64512, 0, -34560]], [[1440, 0, 960, 0], [0, 64512, 0, 34560]]], 'spl_facs_condnorms': [32, 32], 'spl_fod_coeffs': [-6, 0, 0, 0, 1], 'spl_fod_gen': [0, '-107/40', 0, '11/40', 0, '-3/40', 0, '-1/40'], 'spl_fod_label': '4.2.55296.1', 'st_group_base': 'J(E_4)', 'st_group_geom': 'E_1'}
-
g2c_ratpts • Show schema
Hide schema
{'label': '147456.e.884736.1', 'mw_gens': [[[[-2, 1], [1, 1]], [[-2, 1], [0, 1], [0, 1], [0, 1]]], [[[-2, 1], [0, 1], [1, 1]], [[0, 1], [0, 1], [0, 1], [0, 1]]], [[[0, 1], [1, 1]], [[0, 1], [0, 1], [0, 1], [0, 1]]]], 'mw_gens_v': True, 'mw_heights': [{'__RealLiteral__': 0, 'data': '0.97016672557194598774909762059683', 'prec': 113}], 'mw_invs': [0, 2, 2], 'num_rat_pts': 4, 'rat_pts': [[0, 0, 1], [1, 0, 0], [2, -2, 1], [2, 2, 1]], 'rat_pts_v': True}
-
g2c_galrep • Show schema
Hide schema
-
id: 24403
{'conductor': 147456, 'lmfdb_label': '147456.e.884736.1', 'modell_image': '2.180.3', 'prime': 2}
-
id: 24404
{'conductor': 147456, 'lmfdb_label': '147456.e.884736.1', 'modell_image': '3.270.1', 'prime': 3}
-
g2c_tamagawa • Show schema
Hide schema
-
id: 19345
{'label': '147456.e.884736.1', 'local_root_number': -1, 'p': 2, 'tamagawa_number': 2}
-
id: 19346
{'cluster_label': 'c2c3_1~2_0', 'label': '147456.e.884736.1', 'local_root_number': 1, 'p': 3, 'tamagawa_number': 2}
-
g2c_plots • Show schema
Hide schema
{'label': '147456.e.884736.1', 'plot': '%2BnaQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd4VGX6xvF7QiCUFEW6REUQNahYiNJUFte6gtjBAliAXQQLoAiKIoIUV7FFXcFVVBa72LBhQXYFLICwKyJSBAWkSYZQQsr5/fH8QkACUk7mnTPn%2B7muXDnJhJmH1Hve8rwRz/M8AQAAIDSSXBcAAACA2CIAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAL7zPE/RaFSe57kuBQBQBgIgAN/k5OQoKytLRx11lDIyMrRhwwbXJQEAyhDxeIoOwGfRaFQZGRnKzc1Venq663IAAL/DCCAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAL7JyclRVlaWsrOzXZcCANiNiOd5nusiACSWaDSqjIwM5ebmKj093XU5AIDfYQQQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAAEKGAAgAABAyBEAAAICQIQACAACEDAEQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAQELYvNl1BcFBAAQAAIFXXCy1bi117CgtX%2B66mvhHAAQAAIH30kvSzJnSe%2B9JlSq5rib%2BEQABAECgbd0qDRpk17feKtWo4baeICAAAgCAQBs7Vlq4UKpdW7r5ZtfVBAMBEAAABFZenjRkiF0PGiSlprqtJygIgAB8k5OTo6ysLGVnZ7suBUBIjB4t/fqr1LCh1K2b62qCI%2BJ5nue6CACJJRqNKiMjQ7m5uUpPT3ddDoAEtWqV1KiRtGGD9OKL0uWXu64oOBgBBAAAgTR0qIW/k06SLr3UdTXBQgAEAACBs3Ch9OSTdj1qlJREotkrfLoAAEDgDBwoFRRI55wjtW3ruprgIQACAIBAmTFDevllKRKRRo50XU0wEQABAEBgeJ41e5akzp2l445zW09QEQABAEBgvPWWNHWqVLmydO%2B9rqsJLgIgAAAIhIICqX9/u77lFikz0209QUYABAAAgTBmjDR/vp31e/vtrqsJNgIgAACIe9GoNHiwXQ8eLNFjfv8QAAEAQNwbPlxavVo68kipe3fX1QQfARAAAMS1n36yM38la/pcsaLbehIBARAAAMS1gQOl/HypTRupXTvX1SQGAiAAAIhbM2ZI//qXNX1%2B4AF7jf1HAAQAAHHJ86zdiyR16SKdeKLbehIJARAAAMSll16Spk2TqlaVhg1zXU1iIQACAIC4s3lzadPn22%2BX6tVzW0%2BiIQACAIC48%2BCD0tKldtpH376uq0k8BEAAABBXli%2B3vn%2BSNGKETQHDXwRAAAAQVwYMkDZulFq0kDp1cl1NYiIAAvBNTk6OsrKylJ2d7boUAAH15ZfSc8/Z9cMP0/alvEQ8z/NcFwEgsUSjUWVkZCg3N1fpHNgJYA8VF0stW1rvvy5dpGefdV1R4mIEEAAAxIXx4y38paaWrgFE%2BSAAAgAA5zZsKG37cscdUt26butJdARAAADg3LBh0ooVUsOGpad/oPwQAAEAgFMLFljfP0kaPVpKSXFbTxgQAAEAgDOeJ918s1RQIJ17rnT%2B%2Ba4rCgcCIAAAcOadd6RJk6SKFaWHHqLtS6wQAAEAgBNbttjonyT16SM1buy2njAhAAIAACfuv19atEiqV0%2B6807X1YQLARAAAMTckiXSfffZ9QMPWO8/xA4BEAAAxNwtt9gUcJs20uWXu64mfAiAAAAgpt57T5o4UUpOlh57jI0fLhAAAQBAzGzZIvXubdc33SQ1aeK2nrAiAAIAgJgZOVJauNA2ftx9t%2BtqwosACAAAYmLhQmn4cLt%2B8EEpLc1tPWFGAASwk8GDBysSiezwUqdOHddlAQgwz5N69ZLy86Uzz5Quu8x1ReGW7LoAAPGpSZMmmjx58ra3K1So4LAaAEH32mvS%2B%2B9LlSqx8SMeEAABlCk5OZlRPwC%2BiEZtw4ck3X47J37EA6aAAZRpwYIFqlevnho0aKCOHTtq0aJFu/zY/Px8RaPRHV4AoMRdd0nLl0sNG0oDBriuBhIBEEAZTjnlFD333HP64IMPNGbMGK1cuVItW7bU2rVry/z44cOHKyMjY9tLZmZmjCsGEK9mzpQefdSuH39cqlzZbT0wEc/zPNdFAIhvGzduVMOGDXXbbbepT58%2BO92en5%2Bv/Pz8bW9Ho1FlZmYqNzdX6enpsSwVQBwpKpJOOUX65hupY0dpwgTXFaEEawAB/KFq1arp2GOP1YIFC8q8PSUlRSkpKTGuCkC8y8mx8JeRIY0e7boabI8pYAB/KD8/X/PmzVPdunVdlwIgIJYtk%2B64w65HjJDYUxZfCIAAdtKvXz9NmTJFixcv1owZM3TJJZcoGo2qS5curksDEAAlPf/y8qSWLaXu3V1XhN9jChjATn7%2B%2BWd16tRJa9asUc2aNdW8eXNNnz5dhx56qOvSAATAG29Ib70lJSdLTz0lJTHcFHcIgAB28uKLL7ouAUBArV9vo3%2BS1L%2B/1KSJ23pQNjI5AADwze23SytWWLPnO%2B90XQ12hQAIAAB88fnn0j/%2BYddPPUXPv3hGAAQAAPttyxapWze77tZNOv10t/Vg9wiAAABgvw0ZIv3wg1S3rjRqlOtq8EcIgAAAYL/MmlUa%2BnJypAMOcFsP/hgBEAAA7LOCAum66%2BzYt0sukS680HVF2BMEQAAAsM/uv99GAA88UHr0UdfVYE8RAAEAwD6ZN0%2B65x67fvhhjnsLEgIgAADYa0VF0jXXSFu3SuedJ111leuKsDcIgAAAYK%2BNHi3NmCGlp1vvv0jEdUXYGwRAAACwV%2BbPlwYNsusHH5Tq13dbD/YeARAAAOyxkqnfLVuks86Srr3WdUXYFwRAAACwxx58UJo2zaZ%2Bx45l6jeoCIAAfJOTk6OsrCxlZ2e7LgVAOZg3b8ep38xMt/Vg30U8z/NcFwEgsUSjUWVkZCg3N1fp6emuywHgg8JCqUUL6euvpXPPld59l9G/IGMEEAAA/KERIyz8HXCANGYM4S/oCIAAAGC3Zs0qbfj86KPSwQe7rQf7jwAIAAB2acsWqXNnmwK%2B6CLpyitdVwQ/EAABAMAu3XWX9N//SrVqSU8%2BydRvoiAAAgCAMn3%2BufT3v9v1mDFSzZpu64F/CIAAAGAn0ahN/XqeNXtu3951RfATARAAAOzkxhuln36SGjSQHnrIdTXwGwEQAADs4LXXpHHjpKQk6bnnpLQ01xXBbwRAAACwzS%2B/SN262XX//lLr1m7rQfkgAAIAAElScbHUpYv022/SSSdJgwe7rgjlhQAIAAAkSaNHSx9/LFWpIo0fL1Wq5LoilBcCIAAA0KxZ0oABdv3QQ9KRR7qtB%2BWLAAgAQMht3ChdcYVUUCB16FC6BhCJiwAIAEDI3XKL9P33Ur160tixnPYRBgRAAABC7NVX7ZSPSER6/nnpoINcV4RYIAACABBSP/20Y8uXtm3d1oPYIQACABBChYW27m/9eumUU6QhQ1xXhFgiAAIAEEJ33y198YWUni5NmCBVrOi6IsQSARAAgJCZPFkaPtyux4yx834RLgRAAL7JyclRVlaWsrOzXZcCYBdWrpSuvFLyPKl7d%2Bmyy1xXBBcinud5rosAkFii0agyMjKUm5ur9PR01%2BUA%2BH9FRdJZZ0mffCIdc4z05Zd26gfChxFAAABCYuhQC39Vq0qvvEL4CzMCIAAAIfDJJ9I999j1k09KRx3lth64RQAEACDBrVghdepk6/6uu066%2BmrXFcE1AiAAAAmssNDC36pV0rHHSo884roixAMCIAAACWzQIGnKFCk11Y59q1rVdUWIBwRAAAAS1NtvSyNG2PXTT0uNG7utB/GDAAgAQAJatEjq3Nmub7yRfn/YEQEQAIAEs3mzdPHFds5vixbS/fe7rgjxhgAIAEAC8Tzpb3%2BTZs%2BWataUXn5ZqlTJdVWINwRAAAASyD/%2BIY0bJyUlSS%2B%2BKNWv77oixCMCIAAACWL6dFvvJ0nDh0tt27qtB/GLAAgAQAJYudLW/RUU2Otbb3VdEeIZARAAgIArKLBdvsuXS0cfLT3zjBSJuK4K8YwACABAwPXpI02dKqWlSW%2B8Ya%2BB3SEAAgAQJJMmSWefLVWvLh1yiOaee5teeWylJOmFF6Qjj3RcHwIh4nme57oIAIklGo0qIyNDubm5Sk9Pd10OkDhGjZL699/p3UuVqddvnqqbRx/qoCgEESOAAAAEweLF0oABZd50iJbppl9ui3FBCDICIAAAQTBunFRcvMubIxPfsKM/gD1AAATgm5ycHGVlZSk7O9t1KUDiWb5897cXFEirV8emFgQeawAB%2BI41gEA5GDlSuv32Xd9etar0669SamrsakJgMQIIAEAQdO2q4uTdHOp7xRWEP%2BwxAiAAAAHw/W%2B11SP5aRWqws43HnecjRACeyjZdQEAAGD31q2T2rWTftxylQpOOE5Pn/CYKsz8yjo%2Bd%2BwodekiVavmukwECGsAAfiONYCAfwoKrO/zp59Khx4qffWVVLOm66oQdIwAAoBD2z8F5%2BxW/J7nSb16WfhLTZXefpvwB38QAAFgP3ietV5btkz6%2BWdpxQpp5UrrxrF6tU3d5ebaS16etGmTtGWLtHWrjexsHwCTkqTkZKlyZalKFZvRS02VMjKkAw6QDjrI/vjXqiXVqSPVqydlZtpL5cruPgcoPw8/LD31lD05mDBBOvZY1xUhURAAAWAPRKPSd99J8%2BZJ8%2BdLCxZIP/5ohzNs2ODPYxQXWzDcutUeb2/UqSM1bCg1aiQ1biwddZTUpIm9L5nf9IH07rtS3752/fe/S%2Bef77YeJBbWAALwXdDXAK5cKX39tfTNN9LMmdK330o//bT7f1OjhlS/vo3K1aljo3Q1akjVq9voXUaGjeZVrWqje5UqSRUr2qhfUpKFv6IiGxXMz5c2b7YRw7w8Gz387Tdp7VppzRpr9bZihfTLLzbyuGnTrutKSbEgeMIJ0oknStnZtmE0JcXfzxn8NWeO1KqVff2vv750FBDwCwEQgO%2BCFACLi6X//leaOlX697%2BladN2Hfbq1pWysmx0rXFjG107/HBbmF%2B1amzrLuF5FgyXLJEWLrSRyfnzbaRy3ryyw2FKioXBVq2kU0%2B1lwMPjHnp2IWVK6WTT7Zw/6c/Se%2B/b08YAD8RAAH4Lt4D4KJF0gcfSB9/bIvr163b8fZIRDr6aKlZMwtKxx9va6%2BqV3dT774qLrb/67ffSrNm2Yjml1%2BW/f89/njpz3%2BWzjpLat2aNYWubNoktWljO30bN5amTyeco3wQAAH4Lt4CYEGBjfC9/bY0aZL0ww873l6tmtSypY2EtWxp06RxUHa58Dxbuzhtmo14fv65jRhur2pVqW1bW3PWrp1Na6P8FRdLl18uvfqqPdmYMcPWdALlgQAIwHfxEAC3bpU%2B/ND%2BmL71lq2hK5GcbEHvzDOlM86wkb6KFZ2UGRdWrLCR0I8%2BspHRFSt2vL15c%2Bnii6VLLpEOO8xJiaEwYIA0YoRN9370kXTaaa4rQiIjAALwnasAWFxsI30vvGDBb/360ttq1LARrfPPt%2BCXqCN8%2B8vzbAPCu%2B9acJ4xY8fbmze3I2cvv9w2usAfzzwjXXutXT/3nHT11W7rQeIjAALwXawD4LJl0j//KT37rG2GKFG3ro1aXXyxrWurUMYRqti95culiROlV16Rpkwp7VuYnCydd550zTXSX/4S7hHU/fXJJ3bSR2GhNGiQNGSI64oQBgRAAL6LRQAsLrYp3pwcW9dXXGzvT0%2BXLr1UuvJKm0Ij9PlnxQrp5ZdthPXrr0vfX6eOjV517247orHn5s%2B3UdX16%2B1I3/HjrS0QUN4IgAB8V54BcNMmadw46aGHdtzM0aaN9Uu78EJ3LVnCZN48m7YcN05atcrel5Rkm0Zuusm%2BHvSt2701ayz8LVwotWhhI4HsvkasEAAB%2BK48AuD69dJjj9nRWGvW2PvS020K8m9/k4480peHwV4qKLC1go8/bgGmxPHHS/36SZddxvRwWfLzre3Ov/8tNWhg7V5YU4lYIgAC8J2fATA3Vxo92l5Kjkdr0EC6%2BWYLf2lpPhQMX8ybJz36qI0KljSgPvRQ6bbbbIqY0S3jeVKXLtLzz9uTmGnTrME4EEsEQAC%2B8yMA5ufbiN9995U2Lm7SRLrjDlvjx/m28WvdOumJJ6RHHimdHq5XTxo40Kbpw34M3fDh9rmoUMHWr551luuKEEYsNQXgm5ycHGVlZSk7O3uf78PzpNdes%2BPW%2BvWzMHH00bb5YM4cqVMnwl%2B8q17dgvqSJTYiWL%2B%2B7Sbu1ctOtxg3zs49DqM33rDwJ9nnhvAHVxgBBOC7fR0BXLBA6tlTmjzZ3q5XT7r3XpsuYzdvcOXnS08/LQ0bZkFQsqP1HnjAejKGxezZdv7ypk0Whh991HVFCDNGAAE4V1gojRxpoWDyZJsiHDTIdvleey3hL%2BhSUizY//ijNGqUdMAB0ty5NvrVvr3tgk10q1ZJF1xg4e/MM21NK%2BASI4AAfLc3I4A//ihddVXpiRNnnmnrxxo2jEGhcGLdOmt2nJNj4T8lxaZF%2B/dPzPWBBQW24/fzz6UjjrDv9QMPdF0Vwo4RQADOvPiidMIJ9gcxI8P6yn3wAeEv0VWvbn0c58yxYJSfL919t30vTJvmujr/9etn4S8tTXrzTcIf4gMBEEDMFRZaG5dOnaS8PDuxY84cqWtXmgeHydFH22kuEyZItWtbG5lWrWwkMD/fdXX%2BmDDBdkNL1vbl6KPd1gOUYAo4Dnme9Msv9gdxyRJp9Wpp82brsp%2BWZr8oDz/cWmLUrOm6WmBnu5sC3rDBmgO//769PXCgdM897OwNu3XrpFtukZ57zt4%2B/ngbIQ5yg%2B9586TsbGnjRtsVPXSo64qAUgTAOOF50n/%2BY%2BdATpokLV26Z/%2BuQQOpbVvp/PPtMPEqVcq3TmBP7CoArl0rnXOOnSNbtaqNiFx0kcNCEXfefNN6Ba5ZI1WrJo0da2fkBs2WLdLJJ9tml7ZtbaSTzUyIJwRAxzzPjlEaPNhaBJSoUMH6oB1xhI34Va1qfbM2bLA2CgsWSIsW7Xhf6em2mP7GG4P9rBnBV1YAXLfO/hB%2B%2B61Uo4Y90dmPdoFIYCtWSFdeKX36qb19663WPDlIAeqmm2zqt1Yt%2B56vU8d1RcCOCIAOLV9uz3Tfe8/erlpVuvxy6ZJLpNNPt2e/u5Obawum339fev11adkye38kYs%2BYhw2zEUIg1n4fADdvls44w75fa9e2M2M5%2Bgq7U1Qk3XmnNGKEvX3hhTZDEoRZjk8%2Bse93yZ7onHuu23qAshAAHfnyS%2Bt/9euvUqVKUt%2B%2BtlOsevV9u7/iYnu2/PDD0ttv2/sqV7addbfeGqxnzgi%2B7QNgWlq6rrjC1nMdeKDthjzmGNcVIigmTLDNQVu32hPjt9%2BO7/OfN22yfpaLFkl//au1NALiEQHQgenTrddZXp79onjpJX93hs2ebYHyk0/s7TZt7DFq1fLvMYDd2T4Ajh%2Bfrp49bZPH5Mn2RxzYG59/LrVrJ0WjtmP8vfdsxiQeDRpkmz0yM6X//S%2B%2BwyrCjQAYY8uWSSeeaAuczzhDmjhRSk31/3E8z87b7N3bgubhh9sfX6aEEQslAfDbb3PVvLlNAT/4oO3yBPbFV19Zz8BoVOrQwc6LToqzRmbLltlZx1u22LKcCy90XRGwa3H245PYPE%2B65hoLfyecYLvdyiP8SbYOsGtXm2o%2B/HCbjmjbVlq5snweDyjLwIHWwqhNG1sUD%2Byr7GzpnXfspJCJE%2B2M6HgzdKiFv9NOs5AKxDNGAGPojTes5UXlytYaoFGj2Dzu8uX2C2nhQunUU22tIGsCUZ5KRgClXCUlpWvuXDZ9wB/PPSd16WKjf198IZ1yiuuKzKpVNu27datNWZ96quuKgN1jBDCGhg%2B31337xi78SVK9erYTLS1NmjrVzt8EYqVjR8If/NO5s7W7Ki6Weva01/Fg3DgLfyefTPhDMBAAY2TePFvDUrGim6mwxo2lUaPs%2Bt57baca4LtNm6T77pN3XFNJ0lc6SUOrPygVFDguDInkwQftCe3MmdK777quxrzyir2%2B9lq3dQB7igAYIx98YK/btnV3fNv110uHHWZrEN94w00NSGCbN9sq/TvuUOSnJZKkxvpRDR7raz2PCgvd1oeEUbOm1KOHXf/zn25rkawn69df23W7dm5rAfYUATBGZs60161bu6shOVm64gq7LgmkgG%2BeeMI6PZfl/felf/0rtvUgoXXqZK8nT7am0S7NnWub/A45xJbcAEHA8ev7wfM8bdiwYY8%2BdskSe12njrUxcKVJE3v93/%2B6rQOJJT8/X8ljxqhkb1H0d68l2aGubI2ETxo0sCe1eXnS99/bBgxX5s%2B315mZ/F4NmrS0NEUiEddlOMEu4P1QutMRAAAEzfbnlYcNAXA/lDUCmJ2dra%2B%2B%2Bmqnj%2B3QwdqvPPFE6TTs3tjV/e6t116zRconnyytX%2B/Pff6eX7VuLxqNKjMzU8uWLfP9h7U86i2P%2B4zn%2B83Pz1eFv/xFyf9/H1FJmZKWSdr21TrvPDvXaz/F6%2BcglvfLz5j126tdu0hSBf3wg50x7Yd9qfWNN6zv6imnSB9%2B6N/9/pGgfc3i8WcszCOATAHvh0gkstMPXYUKFcr8QTziCAuAS5dK%2B/Jzuqv73VslC5VPOkn67DN/7vP3/Kq1LOnp6b7fd3nUW16fg7i%2B35tusv4c20nXdgHwxhv37Zv/d%2BL6cxCj%2B%2BVnTPrmG3tdq5a11fLrb/i%2B1FqytGbRItudXFYtfM2C9TMWBmwC8dkNN9xQ5vuzs%2B31p5/6e797Y8OG0gGYdu38uc%2BylNf9lpfyqDdon1tf7veKK6Trriv7tttuk84%2Be/8fQ3H%2BOYjR/fIzJj37rL3%2By1/8C3/SvtV6zDFSpUrS6tWl6wH9uF%2BXgvR9G7TPbbxgCjhGli%2BX6te3nWI//GAjgrE2YIA0YoQ99rx5wToNpGS9ZZjXawTGBx9ozaOPqua77%2BopXaasYT3VauDprqvCHwjSz9i8edKxx9ru3xkzbEmLa2edJX30kXTfffa7NhaC9DVD/GEEMEbq1bMlUJL9goi1jz8ubQR9//3BCn%2BSlJKSorvvvlspKSmuS8EfOftsec88I0nqrjG662PCXxAE5WesqEjq3t1et28fH%2BFPKm1LM3Zs7NrSBOVrhvjECGAMzZghNW9u1599Jp0eo7%2BLX34pnXmmtSfo2lX6/7/NQLkpGZmoUCFXRUXpmjxZOuMM11UhEQwcaMdqpqZa/73DDnNdkdm40drA/Pab9NJL0mWXua4I2D1GAGPolFPsNA7JzkddurT8H/PNN%2B30kWjUAucTT5T/YwIlSr7fe/a0g0KA/fH006Vnqj/1VPyEP0mqVq30mM%2B77uL0Q8Q/AmCMjR5tC4ZXrpT%2B9Cdp4cLyeZy8PKl3b2s/s3GjjQC%2B845UuXL5PB5QloEDpbp1bd1rnz6uq0GQjR9vU7%2BSfV%2BVTLnGk5tvtmPq5s%2BXcnJcVwPsHgEwxlJTpUmTpMMPt5YB2dnSq6/a5hA/FBTY2ZhHHik99pi97%2Bab7cD01FR/HgPYUwccULpb88knbX0UsLcef1y6%2BmqpuNhC4NChrisqW0aGNGyYXQ8aFJtZHmBfEQAdyMyU/v1vmxL%2B7Tfp0kulc86Rvvhi34PgihXSyJHWD%2Bu662zXcYMGdubv6NFSxYr%2B/h%2BAPXXWWdI999j1X/8qvf2223oQHEVF0q23SjfcYL8be/a0ZSzx3Lf3uuukli1tFqZbN/%2Be3AN%2BIwA6Ureu9Pnn0p13Wjj78EOpVSupaVPp3nstDG7atOt/v369bSQZOlQ69VTp4IOl22%2B3Z5y1akl//7v03Xf2xzcRvP766zr77LNVo0YNRSIRzZ4923VJ2AuDBkmdO9sf9EsuIQTGk88//1zt2rVTvXr1FIlENHHiRNclSZLWrpXOP99%2Bl0nSkCE2q5EU53%2B1kpJsrWLlyvZ73e%2Bp4OHDhys7O1tpaWmqVauWOnTooPm7aj4I7Eac/ygltkqVLOx9/70dz5aSYrva7rrLwmBqqnTIIVKzZtJpp0mtW0vHHWdrTA480NYQDhpko4meJ7VoYb94liyR%2BvZNrPV%2BGzduVKtWrTRixAjXpWAfRCL2vXnxxdLWrdJFF0nPPee6Kkj2s9W0aVM9VrJmJA785z/SCSdI778vValiDewHDYrvkb/tHXVUadutfv2kb7/1776nTJmiG264QdOnT9dHH32kwsJCnXXWWdq4caN/D4JQoA1MHFm3zs6UnDTJQt2qVbv/%2BEMOsWnkP/3JuuEfckhs6nRpyZIlatCggWbNmqXjjz/edTnYhV01qC0osCc7L7xgb99xh43sxPuoTlhEIhG98cYb6tChg5PH37rVZjWGDbP1fo0a2Rrppk2dlLNfPM/Us%2BnIAAAWYElEQVROXHr3XalxY%2Bmrr3w5CXEnq1evVq1atTRlyhSddtpp/j8AEhZnAceR6tVt/UjJaVqrVkmLF0tr1th0cFKSnTNZu7at76PxO4KmYkVp3DhbsjBypP2hnznTRgNr1HBdHVyaNUu65prS0bKrrrLp06D%2BnotEbAPUiSfaLvhrr5VeecX/Uczc3FxJUvXq1f29YyQ8AmAcq1XLXoBEkpRkRxI2aWI7Ot97Tzr%2BeAuGNIsOn7w82yQ0erStET3oINv1mwiNlGvUkF5%2B2ZbwvPaancJ0223%2B3b/neerTp49at26tY445xr87Rigw8YK4M378eKWmpm57mTp1quuSUA6uvlqaPt1aFv3yi/TnP1vvyrw815UhFjzPwtHRR9tGj6IiC33/%2B19ihL8SzZtLjzxi1wMGWGcGv/Tq1Utz5szRhAkT/LtThAYBEHGnffv2mj179raXZs2auS4J5aRpU%2Bmbb6w9jGS7PJs0kd56y21dKF9ffWWjYpdfLv38sy1peecdO0Ktdm3X1fmvRw9b2lNcbKdA/fDD/t9n79699dZbb%2BnTTz9V/fr19/8OEToEQMSdtLQ0NWrUaNtLlSpVXJeEclStmvV2%2B/BDO9pr6VLpggtsYxPdLRLLggUW%2Bk4%2B2Ta6Vali07//%2B599vRNVJGLrGVu2tBZe7dvb633heZ569eql119/XZ988okaNGjgb7EIDQIgAmHdunWaPXu2vvvuO0nS/PnzNXv2bK1cudJxZfDLmWdaELj9dtssMmmSHZt4ww12dCLKR15e3rbRdklavHixZs%2BeraU%2BHmOxaJGNgB19tE37RiLWF/KHH6ztVRie46Wk2DrAzEx7YnPZZVJh4d7fzw033KAXXnhB//rXv5SWlqaVK1dq5cqV2sxh29hbHhAAzzzzjCdpp5e7777bdWkoQ25urifJy83N3ad/P3%2B%2B57Vr53m2Uszzqlb1vP79PW/1ap8Lhffpp5%2BW%2BbPVpUuX/b7vefM8r2tXz6tQofRr%2BZe/eN7s2ftfd1DNmmXfz5Ln9ey59/%2B%2BrK%2BVJO%2BZZ57xvVYkNvoAAvBNTk6OcnJyVFRUpB9%2B%2BGGnPoB767PPbERwxgx7u1o1W0/Vp4%2B1kkH88Txp2jTb2DFxYulRaCVHAjZv7ra%2BeDBxojVD9zzbINK7t%2BuKEEYEQAC%2B21Uj6H3hebZBYPBg6xko2RRxp07SzTfbiRFwLz/fmjY/8oj05Zel72/fXho40JrWo9SoUVL//tYW6Z13pHPPdV0RwoYACMB3fgbAEp5nR4ONGGHnaJdo3Vrq2dNGVFJSfHko7IVFi6QxY%2Byov9Wr7X0pKdbIuU8fKSvLbX3xyvNsXeQzz1iD///8Rzr2WNdVIUwIgAB8Vx4BcHtffmmNg199tXQh/UEHWW/Ba6/lD2l527hRev11O%2Bnik09K33/wwTZF36MHTez3xNat0tln21KHzEz7vq5Tx3VVCAsCIADflXcALLF8uY0%2BjRljzaRLNG1qI1CXX25/WLH/CgqkyZOlCRMs/G3caO%2BPRGwHd48eNt2bzPlSe2XdOqlFC9sRnZ1tYbBqVddVIQwIgAB8F6sAWKKw0E5Y%2BOc/pbfftrBSomVL6eKLpQsvtIbD2HNbtkgff2yBb%2BJECyslDj9c6tLFXg491F2NieDHH21zzNq19r368su2NhAoTwRAAL6LdQDc3tq10iuv2EjV1Kmlu1Almxo%2B/3zpvPPsDy6jVTtbvtzWWr7zjjXnLhnpk2xa99JLpSuusFGrSMRdnYlm6lQ7DnHrVtscMmKE64qQ6AiAAHznMgBu75dfbPTq9dftD2xRUelt6enSn/5kf3TbtLHNCmEcdcnNtVM5Pv7Ypnjnzt3x9oMPljp0sJGp006TKlRwU2cYvPCCrWOVpLFjbZMIUF4IgAB8Fy8BcHvr1tnpIpMm2XTx9tOZkm0iad3apoybN5dOOsn6DiYSz5N%2B%2BkmaPl364gvbeTp7tp1RWyISsbVo551no6UnnshIXyzdfbc0ZIiNTn/wgdS2reuKkKgIgAB8F48BcHtFRdZTcPJk28X6xRfSpk07fkxSkh1dduKJtqnkuOPsaLo6dYIRiAoK7OzduXMt5M2aJX3zjbRmzc4f27ChBY0zzrCXGjViXy%2BM50lXXmlLGA44wML6kUe6rgqJiAAIwHfxHgB/b%2BtWC4T//redYjFjxo67ird3wAHSUUdJRxwhNWpkmyEOO0w65BCpbl1rUh0rGzdKy5bZqN7ixdLChbahYP58C39lnTVbsaIF2hYtpFatbNSTU1Xiy5YtFsinTbPvsenTbYQa8BMBEIDvghYAy7JihY2YzZolffutNGeOBaztp0t/LxKxjRK1a9tLjRpS9eoWGtPTreFv1apS5crWLDk52dbURSI28lNYaCN3W7faiOTGjVJenq3T%2B%2B032%2BCyerX0669WXzS6%2B/9DaqrUpIkFvuOPt2nt446zx0d8W7XKTk9ZskQ6/XTbkFOpkuuqkEgIgAB8lwgBsCxbtli/tpIRtoULbeRtyRLp5593bD8TK2lp1oblsMNsNLJRI6lxY5u%2BzswMxnQ1yva//9lI7YYN1uB87Fi%2BnvAPARCA7xI1AO5OcbGNzq1YIa1caderV9vI3fr1NlqXl2ejevn59lJQULozORKx0cCKFW10sEoV24SSlmajhwceaKOJNWvaKGOdOjZ1G5JPb2i9955txikulu6/X%2BrXz3VFSBQEQAC%2BC2MABMrLI49IN91kTxLefFNq1851RUgEIex6BQBAcPTubUfteZ414d7Wq3H7xpbAXiIAAgAQxyIR6dFHrXF5Xp70bNtxKjjuRNtFVK2adM01tiAV2AtMAQPwHVPAgP/WrZNeadhfPdaP2vnGgw6yPkZHHRX7whBIjAACABAA1Vd9X3b4k6xHUP/%2BsS0IgUYABAAgCJ5/fve3v/uuBUFgDxAAAfgmJydHWVlZys7Odl0KkHhWr9797UVF1ncI2AOsAQTgO9YAAuVg9GipT59d356ebk0oq1SJXU0ILEYAAQAIgi5dbNfvLhRc2YXwhz1GAAQAIAiqV5defLHMw5ynqrW6rR4u5vSwp5gCBuA7poCBcvTTT9I//iF9/bWUmqp5TTvqxHsv1Jaiiho1Srr1VtcFIggIgAB8RwAEYuvxx6UbbpCSkqQPPpD%2B/GfXFSHeMQUMAEDA/e1vdiBIcbHUsaO0ZInrihDvCIAAAARcJGKjgM2aWSvAiy%2BWNm92XRXiGQEQAIAEULmy9NprUo0a0syZNiXMIi/sCgEQAIAEccghtlE4KUl65hlpzBjXFSFeEQABAEggZ5wh3XefXffuLX31ldt6EJ8IgAAAJJjbbpM6dJC2bpUuuYQjgrEzAiAAAAkmEpGefVZq1EhaulS66irbIQyUIAACAJCAMjJsU0jlytL770vDhrmuCPGEAAgAQII67jjpiSfsevBg6eOPnZaDOEIABAAggXXtKl17rU0BX3GFtGKF64oQDwiAAAAkuMces9HAVaukTp2kwkLXFcE1AiAAAAmuShXplVek1FRpyhSbDka4EQABAAiBxo1LG0Pfd5/00Udu64FbBEAAAEKiY0epe3c7Iu6qq1gPGGYEQAAAQuShh6Rjj7X1gFddJRUVua4ILhAAAfgmJydHWVlZys7Odl0KgF2oUkV6%2BWWpalXpk0%2BkESNcVwQXIp7nea6LAJBYotGoMjIylJubq/T0dNflACjDs89K11wjVahgG0NatXJdEWKJEUAAAEKoSxfpyittCrhTJ%2Bm331xXhFgiAAIAEEKRiJ0S0rChtGyZ1K2bbQ5BOBAAAQAIqbQ06cUXpeRkOzd47FjXFSFWCIAAAIRYs2bWF1CSbrpJ%2Bv57t/UgNgiAAACEXN%2B%2B0p//LG3ebOcF5%2Be7rgjljQAIAEDIJSVJ48ZJBx0kzZol3Xmn64pQ3giAAABA9epJTz9t13//u/UIROIiAAIAAEnSBRfYUXGS1LmztG6d23pQfgiAAABgmwcflBo3ln75Rfrb32gNk6gIgAAAYJtq1aTx4601zMsvSy%2B84LoilAcCIAAA2EGzZtJdd9l1r17S0qVu64H/CIAAAGAnAwZIzZtL0agdG1dc7Loi%2BIkACAAAdpKcLD3/vE0Jf/aZ9PDDriuCnwiAAACgTI0aSQ88YNcDBkjffee2HviHAAgAAHape3fp3HPtdJDOnaWCAtcVwQ8EQAAAsEuRiDR2rHTggdI335SeG4xgIwACAIDdqldPysmx66FDpZkz3daD/UcABAAAf6hjR%2BmSS6TCQtsVnJ/vuiLsDwIgAN/k5OQoKytL2dnZrksB4LNIRHr8calmTem//5WGDHFdEfZHxPM45AWAv6LRqDIyMpSbm6v09HTX5QDw0euvSxdfLFWoIE2bJvF8L5gYAQQAAHvsootsOrioSOralangoCIAAgCAvfLoo1KtWtYXkKngYCIAAgCAvVKjhvTEE3Y9cqS1h0GwEAABAMBeu%2Bgi6bLLbCr4mmukrVtdV4S9QQAEAAD75LHHbDRw7lxp%2BHDX1WBvEAABAMA%2BqVnT1gNK0rBh1h4GwUAABAAA%2B%2Bzyy6X27e2M4OuusylhxD8CIAAA2GclDaIzMqQvv5Qefth1RdgTBEAAALBfDj5Yuv9%2Bu77zTmnRIrf14I8RAAEAwH67/nqpTRtp82apRw%2BJc8biGwEQAADst0hEGjNGqlxZmjxZeu451xVhdwiAAADAF40aSXffbdd9%2BkirV7utB7tGAAQAAL7p21dq2lRat0665RbX1WBXCIAAAMA3FSvaVHBSkjR%2BvPThh64rQlkIgAB20rVrV0UikR1emjdv7rosAAGRnS317m3Xf/2rtGmT23qwMwIggDKdc845WrFixbaXSZMmuS4JQIDce69Uv760eLE0ZIjravB7BEAAZUpJSVGdOnW2vVSvXt11SQACJC1Nysmx6wcesPOCET8IgADK9Nlnn6lWrVpq3LixunXrplWrVrkuCUDAtG8vXXihVFhoU8HFxa4rQomI59GqEcCOXnrpJaWmpurQQw/V4sWLNWjQIBUWFuqbb75RSkrKTh%2Bfn5%2Bv/Pz8bW9Ho1FlZmYqNzdX6enpsSwdQJz5%2BWfp6KOlvDzpqaekbt1cVwSJAAiE3vjx49WjR49tb7/33ns69dRTd/iYFStW6NBDD9WLL76oiy66aKf7GDx4sO65556d3k8ABCBJDz1kLWEOPFD6/nupVi3XFYEACITchg0b9Ouvv257%2B%2BCDD1aVKlV2%2BrgjjjhC119/vfr377/TbYwAAtidwkLbGTx7ttS5szRunOuKkOy6AABupaWlKS0tbbcfs3btWi1btkx169Yt8/aUlJQyp4YBQJKSk6Unn5RatLAj4q69Vjr9dNdVhRubQADsIC8vT/369dO0adO0ZMkSffbZZ2rXrp1q1KihCy%2B80HV5AALqlFOk7t3tumdPaetWt/WEHQEQwA4qVKiguXPn6oILLlDjxo3VpUsXNW7cWNOmTfvDkUIA2J377pNq1JC%2B%2B87WBcId1gAC8F00GlVGRgZrAAHs5NlnpWuukapVk%2BbNkzIzXVcUTowAAgCAmOncWWrVStq4UerTx3U14UUABAAAMZOUJD3%2BuFShgvTqq9JHH7muKJwIgAAAIKaOO0664Qa77tWLDSEuEAABAEDMDRki1a4t/fCDNHq062rChwAIAABiLiNDGjnSru%2B9146MQ%2BwQAAEAgBNXXy21bGkbQm67zXU14UIABAAATiQlSY89JkUi0oQJ0pQprisKDwIgAABw5oQTpB497PrGG%2B3cYJQ/AiAAAHBq6FCpenVpzhzpH/9wXU04EAABAIBTBx1kG0EkadAgae1at/WEAQEQAAA417279Qf87TfprrtcV5P4CIAAAMC55GTp4Yft%2Bsknpblz3daT6AiAAAAgLrRpI11yiVRcLN10k%2BR5ritKXARAAAAQN%2B6/X0pJkT79VJo40XU1iYsACMA3OTk5ysrKUnZ2tutSAATUYYdJ/frZdd%2B%2B0pYtTstJWBHPY4AVgL%2Bi0agyMjKUm5ur9PR01%2BUACJi8POnII6Xly6URI6T%2B/V1XlHgYAQQAAHElNVUaPtyuhw2Tfv3VbT2JiAAIAADizlVXSc2aSRs2WG9A%2BIsACAAA4k5SkvTQQ3b99NPSt9%2B6rSfREAABAEBcatVKuvRSawvTty9tYfxEAAQAAHFr5EhrC/Pxx9K777quJnEQAAEAQNxq0MCaQkvSrbdKBQVu60kUBEAAABDXBg6UatSQvv9eeuop19UkBgIgAACIaxkZ0j332PXgwVJurtNyEgIBEAAAxL1u3aSjjpLWrCntEYh9RwAEAABxr2JFadQou37oIWnpUrf1BB0BEAAABML550tt2kj5%2BdKdd7quJtgIgAAAIBAiEen%2B%2B%2B36%2BeelWbPc1hNkBEAAABAYzZpJnTrZ9a230hx6XxEAAQBAoAwbJlWqZM2hP/jAdTXBRAAEAACB0qCB1KuXXffvLxUVua0niAiAAAAgcO64w/oDzpkjjR/vuprgIQACAIDAqV7dTgiRpEGDpC1b3NYTNARAAAAQSL17S/XrW0/AnBzX1QQLARAAAARSlSqlR8QNGyatX%2B%2B2niAhAALwTU5OjrKyspSdne26FAAh0bmzlJUl/fZb6Ukh%2BGMRz6ODDgB/RaNRZWRkKDc3V%2Bnp6a7LAZDg3nxT6tDBRgR//FGqV891RfGPEUAAABBo7dtLLVpImzdL997ruppgIAACAIBAi0SkESPseuxYacECt/UEQbLrAgAAAPbXaadJV10lNW1qO4Oxe6wBBOA71gACQHxjChgAACBkCIAAAAAhQwAEAAAIGQIgAABAyBAAAQAAQoYACAAAEDIEQAAAgJAhAAIAAIQMARAAACBkCIAAAAAhQwAEAAAIGQIgAABAyBAAAQAAQoYACAAAEDIEQAC%2BycnJUVZWlrKzs12XAgDYjYjneZ7rIgAklmg0qoyMDOXm5io9Pd11OQCA32EEEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAAAEDIEAABAABChgAIAAAQMgRAAACAkCEAAgAAhAwBEAAAIGQIgAAAACFDAAQAAAgZAiAA3%2BTk5CgrK0vZ2dmuSwEA7EbE8zzPdREAEovnedqwYYPS0tIUiURclwMA%2BB0CIAAAQMgwBQwAABAyBEAAAICQIQACAACEDAEQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAAEKGAAgAABAyBEAAAICQIQACAACEDAEQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAAEKGAAgAABAyBEAAAICQIQACAACEDAEQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAAEKGAAgAABAyBEAAAICQIQACAACEDAEQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAAEKGAAgAABAyBEAAAICQIQACAACEDAEQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAAEKGAAgAABAyBEAAAICQIQACAACEDAEQAAAgZAiAAAAAIUMABAAACBkCIAAAQMgQAAEAAEKGAAgAABAyBEAAAICQ%2BT/r5zS2lWjYyQAAAABJRU5ErkJggg%3D%3D'}