-
g2c_curves • Show schema
Hide schema
{'Lhash': '202758011053514979', 'abs_disc': 884736, 'analytic_rank': 0, 'analytic_rank_proved': False, 'analytic_sha': 1, 'aut_grp_id': '[2,1]', 'aut_grp_label': '2.1', 'aut_grp_tex': 'C_2', 'bad_lfactors': '[[2,[1]],[3,[1,0,3]]]', 'bad_primes': [2, 3], 'class': '147456.c', 'cond': 147456, 'disc_sign': 1, 'end_alg': 'Q', 'eqn': '[[0,3,0,5,0,2],[]]', 'g2_inv': "['10442615625/32','2558131875/256','-401375/1536']", 'geom_aut_grp_id': '[8,3]', 'geom_aut_grp_label': '8.3', 'geom_aut_grp_tex': 'D_4', 'geom_end_alg': 'M_2(Q)', 'globally_solvable': 1, 'has_square_sha': True, 'hasse_weil_proved': False, 'igusa_clebsch_inv': "['195','630','44910','108']", 'igusa_inv': "['780','18630','-380','-86843325','884736']", 'is_gl2_type': False, 'is_simple_base': True, 'is_simple_geom': False, 'label': '147456.c.884736.1', 'leading_coeff': {'__RealLiteral__': 0, 'data': '1.3957885140495622610224983442752740930867142593403267733', 'prec': 190}, 'locally_solvable': True, 'modell_images': ['2.180.3', '3.270.1'], 'mw_rank': 0, 'mw_rank_proved': True, 'non_solvable_places': [], 'num_rat_pts': 2, 'num_rat_wpts': 2, 'real_geom_end_alg': 'M_2(R)', 'real_period': {'__RealLiteral__': 0, 'data': '5.5831540561982490440899933771', 'prec': 100}, 'regulator': {'__RealLiteral__': 0, 'data': '1.0', 'prec': 10}, 'root_number': 1, 'st_group': 'J(E_4)', 'st_label': '1.4.E.8.3a', 'st_label_components': [1, 4, 4, 8, 3, 0], 'tamagawa_product': 4, 'torsion_order': 4, 'torsion_subgroup': '[2,2]', 'two_selmer_rank': 2, 'two_torsion_field': ['4.0.2304.2', [9, 0, 0, 0, 1], [4, 2], True]}
-
g2c_endomorphisms • Show schema
Hide schema
{'factorsQQ_base': [['1.1.1.1', [0, 1], -1]], 'factorsQQ_geom': [['1.1.1.1', [0, 1], 1]], 'factorsRR_base': ['RR'], 'factorsRR_geom': ['M_2(RR)'], 'fod_coeffs': [49, 0, -68, 0, 18, 0, 4, 0, 1], 'fod_label': '8.0.12230590464.5', 'is_simple_base': True, 'is_simple_geom': False, 'label': '147456.c.884736.1', 'lattice': [[['1.1.1.1', [0, 1], [0, 0, 0, 0, 0, 0, 0, 0]], [['1.1.1.1', [0, 1], -1]], ['RR'], [1, -1], 'J(E_4)'], [['2.0.4.1', [1, 0, 1], [0, '-193/56', 0, '125/56', 0, '27/56', 0, '5/56']], [['2.0.4.1', [1, 0, 1], -1]], ['CC'], [1, -1], 'E_4'], [['2.0.24.1', [6, 0, 1], ['-39/4', 0, '25/4', 0, '5/4', 0, '1/4', 0]], [['1.1.1.1', [0, 1], -1]], ['RR'], [1, -1], 'J(E_2)'], [['2.2.24.1', [-6, 0, 1], [0, '-41/14', 0, '11/28', 0, '1/7', 0, '1/28']], [['1.1.1.1', [0, 1], -1]], ['RR'], [1, -1], 'J(E_2)'], [['4.0.2304.2', [9, 0, 0, 0, 1], ['-39/8', '41/28', '25/8', '-11/56', '5/8', '-1/14', '1/8', '-1/56']], [['2.0.4.1', [1, 0, 1], -1]], ['CC'], [1, -1], 'E_2'], [['4.0.55296.1', [6, 0, 0, 0, 1], ['-43/8', 0, '21/8', 0, '5/8', 0, '1/8', 0]], [['2.2.8.1', [-2, 0, 1], -1]], ['RR', 'RR'], [1, -1], 'J(E_1)'], [['4.0.55296.1', [6, 0, 0, 0, 1], [0, '-137/56', 0, '125/56', 0, '27/56', 0, '5/56']], [['2.2.8.1', [-2, 0, 1], -1]], ['RR', 'RR'], [1, -1], 'J(E_1)'], [['4.2.55296.4', [-24, 0, 0, 0, 1], ['-43/8', '137/56', '21/8', '-125/56', '5/8', '-27/56', '1/8', '-5/56']], [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], ['RR', 'RR'], [2, -1], 'J(E_1)'], [['4.2.55296.4', [-24, 0, 0, 0, 1], ['-43/8', '-137/56', '21/8', '125/56', '5/8', '27/56', '1/8', '5/56']], [['1.1.1.1', [0, 1], -1], ['1.1.1.1', [0, 1], -1]], ['RR', 'RR'], [2, -1], 'J(E_1)'], [['8.0.12230590464.5', [49, 0, -68, 0, 18, 0, 4, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0]], [['1.1.1.1', [0, 1], 1]], ['M_2(RR)'], [4, 0], 'E_1']], 'ring_base': [1, -1], 'ring_geom': [4, 0], 'spl_facs_coeffs': [[[-720, 0, 240, 0], [0, -16128, 0, 4320]], [[-720, 0, 240, 0], [0, 16128, 0, -4320]]], 'spl_facs_condnorms': [32, 32], 'spl_fod_coeffs': [-24, 0, 0, 0, 1], 'spl_fod_gen': ['-43/8', '-137/56', '21/8', '125/56', '5/8', '27/56', '1/8', '5/56'], 'spl_fod_label': '4.2.55296.4', 'st_group_base': 'J(E_4)', 'st_group_geom': 'E_1'}
-
g2c_ratpts • Show schema
Hide schema
{'label': '147456.c.884736.1', 'mw_gens': [[[[3, 2], [0, 1], [1, 1]], [[0, 1], [0, 1], [0, 1], [0, 1]]], [[[1, 1], [0, 1], [1, 1]], [[0, 1], [0, 1], [0, 1], [0, 1]]]], 'mw_gens_v': True, 'mw_heights': [], 'mw_invs': [2, 2], 'num_rat_pts': 2, 'rat_pts': [[0, 0, 1], [1, 0, 0]], 'rat_pts_v': True}
-
g2c_galrep • Show schema
Hide schema
-
id: 24399
{'conductor': 147456, 'lmfdb_label': '147456.c.884736.1', 'modell_image': '2.180.3', 'prime': 2}
-
id: 24400
{'conductor': 147456, 'lmfdb_label': '147456.c.884736.1', 'modell_image': '3.270.1', 'prime': 3}
-
g2c_tamagawa • Show schema
Hide schema
-
id: 19341
{'label': '147456.c.884736.1', 'local_root_number': 1, 'p': 2, 'tamagawa_number': 2}
-
id: 19342
{'cluster_label': 'c2c3_1~2_0', 'label': '147456.c.884736.1', 'local_root_number': 1, 'p': 3, 'tamagawa_number': 2}
-
g2c_plots • Show schema
Hide schema
{'label': '147456.c.884736.1', 'plot': '%2BnaQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VdX5t/H7MEWGEGUWjUodQCqgtYjgLBjUIuIEFosT1VYRfwhO2Po6C1VbqhIH2qoVQWoVUFFRVGSQUTGK81C0UERQMECAAOG8f6waQgmCmGSfc/b9ua595Uz75MkxwNe113pWIplMJpEkSVJsVIu6AEmSJFUtA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJIkSTFjAJQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJIkSTFjAJQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJIkSTFjAJQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJIkSTFjAJQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJIkSTFjAJQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJIkSTFjAJQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJIkSTFjAJSkciSTSVauXEkymYy6FEmqcAZASSrHqlWryMnJYdWqVVGXIkkVzgAoSZIUMwZASZKkmDEASpIkxYwBUJLKyM/Pp3Xr1rRv3z7qUiSp0iSSLnGTpK2sXLmSnJwcCgsLqV%2B/ftTlSFKFcgRQkiQpZgyAkiRJMWMAlCRJihkDoCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKUhk2gpYUBzaClqRy2AhaUiZzBFCSJClmDICSJEkxYwCUJEmKGQOgJElSzBgAJUmSYsYAKEmSFDMGQEmSpJgxAEqSJMWMAVCSynAnEElx4E4gklQOdwKRlMkcAZQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJJUho2gJcWBjaAlqRw2gpaUyRwBlCRJihkDoCRJygjLlkVdQfowAEqSpLT37bfw859D795QWBh1NanPACgp7dx///20bduW%2BvXrU79%2BfTp27MgLL7xQ%2BnxxcTH9%2B/enUaNG1K1bl%2B7du7No0aIIK5ZU2fr1g3//G%2BbMgerVo64m9RkAJaWdPffck6FDh/LGG2/wxhtvcPzxx3Pqqafy3nvvATBgwADGjRvHmDFjmD59OqtXr6Zbt26UlJREXLmkyjB6dDiqV4fHHoN69aKuKPW5ClhSRmjQoAF33nknZ555Jo0bN2bkyJH06tULgMWLF5Obm8vzzz9P165dd%2Bj9XAUspYfPP4d27WDlSrjpJvh//y/qitKDI4CS0lpJSQljxoyhqKiIjh078uabb7Jhwwby8vJKX9O8eXMOOuggZsyYEWGlkiraxo1wzjkh/HXsCNddF3VF6aNG1AVI0s6YP38%2BHTt2ZN26ddSrV49x48bRunVrCgoKqFWrFrvtttsWr2/atClLlizZ5vsVFxdTXFxcen/lypWVVrukinHrrTBjBtSvD6NGQQ1TzQ5zBFBSWmrZsiUFBQXMmjWLSy65hPPOO4/3339/m69PJpMkEoltPj9kyBBycnJKj9zc3MooW1IFmT4dbrkl3L7/fmjRItp60o1zACVlhC5durDvvvvSq1cvOnfuzPLly7cYBWzXrh09evTgpptuKvf88kYAc3NznQMopaAVK8K8v4UL4dxz4e9/j7qi9OMIoKSMkEwmKS4u5tBDD6VmzZpMmjSp9Lkvv/ySd999l06dOm3z/KysrNK2Mt8dklJPMgkXXRTC3777wvDhUVeUnrxaLintXHfddZx00knk5uayatUqxowZw2uvvcbEiRPJycmhb9%2B%2BDBo0iIYNG9KgQQOuvPJK2rRpQ5cuXaIuXdKPNGIEPPUU1KwJY8ZAdnbUFaUnA6CktPPVV1/Rp08fvvzyS3Jycmjbti0TJ07khBNOAGDYsGHUqFGDnj17snbtWjp37swjjzxCdbvDSmlt/nwYMCDcHjIk7PyhneMcQEkqh30ApdRSVATt28MHH8CJJ8Jzz0E1J7LtND86SZKU8vr3D%2BFv993h0UcNfz%2BWH58kSUppjz4KDz8cQt/o0dC4cdQVpT8DoCRJSlkffACXXhpu33ADHHtspOVkDAOgJJWRn59P69atad%2B%2BfdSlSLG3Zg307Bnm/x1/PPzud1FXlDlcBCJJ5XARiBS9Cy8Ml36bNoWCAmjWLOqKMocjgJIkKeU8/PDmeX%2BPP274q2gGQEmSlFLeeWfzvL%2Bbb4bjjou2nkxkAJQkSSmjsBDOOAPWrQv9/gYPjrqizGQAlCRJKSGZhAsugE8/hb32gsces99fZfFjlSRJKeGuu2DcuLDP75NPQsOGUVeUuQyAkiQpcq%2B9BtdeG27ffXfY9k2VxwAoSZIi9Z//QK9esGkT9OkDv/1t1BVlPgOgJEmKTHExnHkmLF0K7drBAw9AIhF1VZnPAChJZbgTiFS1BgyAWbNg113hqaegTp2oK4oHdwKRpHK4E4hU%2Bf76V7joojDiN2ECnHxy1BXFhyOAkiSpys2eDf36hdu33GL4q2oGQEmSVKW%2B/BJOPx3Wr4fTTrPZcxQMgJIkqcoUF4edPhYvhtat4e9/t9lzFPzIJUlSlUgmwx6/M2eGRR/jx0N2dtRVxZMBUJIkVYnhw%2BGhh8KI35gxsP/%2BUVcUXwZASZJU6V5%2BGa64Ity%2B4w7o2jXaeuLOAChJkirVJ5/AWWdBSQmcey4MHBh1RTIASlIZNoKWKta338Ipp4Svhx8ODz7oTh%2BpwEbQklQOG0FLP97GjaG/36RJsOeeMHcuNGsWdVUCRwAlSVIlGTAghL86deCZZwx/qcQAKEmSKty990J%2BfrjcO2oUHHJI1BWpLAOgJEmqUM8/H0b/AIYMgR49oq1HWzMASpKkCvP229CrF2zaBBdeCFdfHXVFKo8BUJIkVYj//Ae6dYPVq%2BG44%2BD%2B%2B13xm6oMgJIk6UdbvTq0e1m0CFq1gqeeglq1oq5K22IAlCRJP8rGjeGy71tvQePGYQ7gbrtFXZW%2BjwFQkiTttGQS%2BvULoa92bZgwAVq0iLoqbY8BUJLKcCcQ6Ye5/XYYMSLM9Xv8cTjssKgr0o5wJxBJKoc7gUjb98gjcMEF4fa998Jll0Vajn4ARwAlSdIP9uKLcNFF4fbVVxv%2B0o0BUJIk/SBz58IZZ4TFH%2BecE5o9K70YACVJ0g775BM4%2BWQoKoITToCHHoJqpom0438ySWlnyJAhtG/fnuzsbJo0aUKPHj346KOPtnhNcXEx/fv3p1GjRtStW5fu3buzaNGiiCqWMsPixZCXB19/DT/7mb3%2B0pkBUFLamTJlCv369WPWrFlMmjSJjRs3kpeXR1FRUelrBgwYwLhx4xgzZgzTp09n9erVdOvWjZKSkggrl9LXihXQtSt8/jnst19o%2B5KdHXVV2lmuApaU9pYtW0aTJk2YMmUKRx99NIWFhTRu3JiRI0fSq1cvABYvXkxubi7PP/88Xbt23e57ugpY2qyoKIz8zZgBu%2B8Or79ur7905wigpLRXWFgIQIMGDQB488032bBhA3l5eaWvad68OQcddBAzZswo9z2Ki4tZuXLlFockWL8ezjwzhL9ddw2rfw1/6c8AKCmtJZNJBg4cyJFHHslBBx0EwJIlS6hVqxa7/c9eVE2bNmXJkiXlvs%2BQIUPIyckpPXJzcyu9dinVlZRAnz4wcSLUqQPPPQdt2kRdlSqCAVBSWrvssst45513ePzxx7f72mQySSKRKPe5wYMHU1hYWHosXLiwokuV0sqmTfCb38ATT0DNmjBuHHTqFHVVqigGQElpq3///jzzzDNMnjyZPffcs/TxZs2asX79elasWLHF65cuXUrTpk3Lfa%2BsrCzq16%2B/xSHFVTIJgwbB3/4WWrw8/niYA6jMYQCUlHaSySSXXXYZY8eO5dVXX6XF/0xIOvTQQ6lZsyaTJk0qfezLL7/k3XffpZNDGNJ2XX89/PnP4fbf/haaPiuz1Ii6AEn6ofr168fo0aN5%2Bumnyc7OLp3Xl5OTQ%2B3atcnJyaFv374MGjSIhg0b0qBBA6688kratGlDly5dIq5eSm233w633RZuDx8O558faTmqJLaBkZR2tjWP7%2BGHH%2Bb8//5rtW7dOq666ipGjx7N2rVr6dy5M/fdd98OL%2B6wDYzi6E9/Cpd%2BAe64A666Ktp6VHkMgJJUDgOg4mb4cOjfP9y%2B6Sb4f/8v2npUuZwDKElSzD3wwObwd911YQ6gMpsBUJKkGBsxAi65JNy%2B6iq49VbYxiwLZRADoCRJMTViROj1BzBwIPzhD4a/uDAASlIZ%2Bfn5tG7dmvbt20ddilSpHnxwc/gbMADuusvwFycuApGkcrgIRJnsvvugX79we8CAsPrX8BcvjgBKkhQjd9%2B9OfwNGmT4iysDoCRJMXHHHWHED%2BDqq%2BHOOw1/cWUAlCQpwyWTobffNdeE%2B9dfD0OHGv7izK3gJEnKYMlkCH533hnu3347DB4cbU2KngFQkqQMtWlTmO/3wAPh/rBhmy8BK94MgJIkZaANG%2BD882H06HCpd8QI%2BPWvo65KqcIAKElShlm7Fnr2hAkToEYNGDkSzj476qqUSlwEIkll2Aha6e7bb6Fr1xD%2BdtkFnn7a8Ket2QhaksphI2iloy%2B/hJNOgrffhpwcePZZOOqoqKtSKvISsCRJGeCTT8LI34IF0LQpTJwIBx8cdVVKVV4CliQpzc2dC0ccEcLfvvvC668b/vT9DICSJKWx55%2BHY4%2BFZcvgZz8L4W/ffaOuSqnOAChJUpr6y1%2Bge3dYswby8uC118LlX2l7DICSJKWZZBJ%2B/3u4%2BGIoKYHzzgurfrOzo65M6cJFIJIkpZF16%2BDCC%2BHxx8P9668P%2B/y6r69%2BCAOgJElp4uuv4bTTYPr00OB5xAi44IKoq1I6MgBKkpQGPvwQunWDzz4LPf6eego6d466KqUr5wBKUhnuBKJUNGkSHH54CH8tWsCMGYY//TjuBCJJ5XAnEKWCZBKGD4crrgiLPY44AsaNg8aNo65M6c4RQEmSUtD69fCb38Dll4fwd%2B658Morhj9VDOcASpKUYr76Cs48Myz2SCTgD3%2BAK690pa8qjgFQkqQUMncunH46LFoE9euHdi8nnxx1Vco0XgKWJClFPPIIHHVUCH8tW8KcOYY/VQ4DoCRJESsuhksvDT39iovhlFNg9uwQAqXKYACUJClCCxfCMcfA/feHOX433gjjx4def1JlcQ6gJEkReekl6N0bvvkGdtsNHnvMS76qGo4ASlIZNoJWVSgpgRtugBNPDOHvkEPgzTcNf6o6NoKWpHLYCFqVZcmSMOo3eXK4f/HFcPfdsMsu0dalePESsCRJVWTSJPjVr2DpUqhbFx58EM45J%2BqqFEdeApYkqZJt2ADXXgt5eSH8tWkDb7xh%2BFN0HAGUJKkSffppCHpz5oT7v/0t/OlPULt2tHUp3hwBlJR2pk6dyimnnELz5s1JJBKMHz9%2Bi%2BeTySQ33ngjzZs3p3bt2hx77LG89957EVWruEom4e9/Dws85syBXXeFJ58M7V4Mf4qaAVBS2ikqKqJdu3YMHz683OfvuOMO/vSnPzF8%2BHDmzp1Ls2bNOOGEE1i1alUVV6q4Wr4cevWC88%2BH1avh6KPh7bfhjDOirkwKXAUsKa0lEgnGjRtHjx49gDD617x5cwYMGMA111wDQHFxMU2bNuUPf/gDv/nNb3bofV0FrJ314otw4YWweDHUqAE33QTXXAPVq0ddmbSZI4CSMsqCBQtYsmQJeXl5pY9lZWVxzDHHMGPGjAgrU6ZbvRouuST09lu8OGzjNnMmXHed4U%2Bpx0UgkjLKkiVLAGjatOkWjzdt2pQvvvhim%2BcVFxdTXFxcen/lypWVU6Ay0pQpYR/fBQvC/f79YehQqFMn2rqkbXEEUFJGSiQSW9xPJpNbPVbWkCFDyMnJKT1yc3Mru0RlgKIiuPxyOPbYEP722gtefhnuucfwp9RmAJSUUZo1awZsHgn8ztKlS7caFSxr8ODBFBYWlh4LFy6s1DqV/l55JfTzu/fecP/Xv4b586Fz52jrknaEAVBSRmnRogXNmjVj0qRJpY%2BtX7%2BeKVOm0KlTp22el5WVRf369bc4pPKsWAF9%2B0KXLptH/V58Ef7yF/DXRunCOYCS0s7q1av59NNPS%2B8vWLCAgoICGjRowF577cWAAQO4/fbb2X///dl///25/fbbqVOnDr17946waqW7ZBKeeAL%2B7//gq6/CY/36wZAhkJ0dbW3SD2UAlJR23njjDY477rjS%2BwMHDgTgvPPO45FHHuHqq69m7dq1XHrppaxYsYIOHTrw0ksvke2/0tpJ//pXCHsTJ4b7rVqFEb8jj4y2Lmln2QdQksphH0ABrF8Pd90Ft9wC69ZBrVqhrcu110JWVtTVSTvPEUBJksoxaVJo5/LRR%2BH%2BcceFbdxatoy2LqkiuAhEkqQyvvgCzjwT8vJC%2BGvaFEaODKt%2BDX/KFAZASZKANWvgxhvD/L6nngq7d1x%2BeQiBv/oVfE8bSSnteAlYksrIz88nPz%2BfkpKSqEtRFdm0CR5/PMzrW7QoPHbMMaG/X5s20dYmVRYXgUhSOVwEEg%2Bvvw4DB8KcOeH%2B3nvDnXeGS8CO%2BCmTOQIoSYqdjz6CwYNh3Lhwv169cP%2BKK6B27Whrk6qCAVCSFBuLF8PNN8Nf/wolJVCtWtjV4%2Bab4b%2B7CEqxYACUJGW85cvhjjvgnntg7drwWLduMHQo/PSn0dYmRcEAKEnKWCtXwrBh8Kc/hdsAnTqF4HfUUdHWJkXJAChJyjgrV4ZVvH/8I6xYER5r2xZuuw1%2B8QsXeEgGQElSxvj22xD8hg3bHPwOPDD09zvzzDDnT5IBUJKUAZYuhT//GfLzN1/qbdUKrr8eevUKTZ0lbWYAlCSlrQULwmXev/0N1q0Ljx10EPzud3DWWQY/aVsMgJJUhjuBpIe5c0Pw%2B%2Bc/w04eAO3bw3XXQffuXuqVtsedQCSpHO4EknpKSuCZZ8L8vmnTNj%2BelwfXXAPHHefiDmlHOQIoSUppK1bAww/D8OHhki9AjRrwy1/CoEHQrl209UnpyAAoSUpJb70F990Ho0Ztbt7csCFcfDH06wd77BFtfVI6MwBKklLGmjXwj3/Agw/C7NmbH2/TBi6/HM45x716pYpgAJQkRSqZhHnzwkreUaM2t3GpWRNOPz2M9h15pPP7pIpkAJQkRWLpUhg9Oszve%2BedzY//5Cdw0UVwwQXQtGl09UmZzAAoSaoya9bAhAnw2GPwwguwcWN4PCsLTjsN%2BvaF44%2B3jYtU2QyAkqRKtWEDvPIKjBkDY8fCqlWbn2vfHs4/P6zo3W23yEqUYscAKEll2Ai6YmzYAFOmhEbNTz0F33yz%2Bbm994beveHcc8N2bZKqno2gJakcNoL%2B4datg5dfDqN8Tz8Ny5dvfq5x47A12y9/CZ06eYlXipojgJKknfb11/D88yHwvfgiFBVtfq5RozCvr2dPOPbY0LxZUmrwj6MkaYdt2gQFBWEBx3PPwaxZoY3Ld/bcE3r0CMHv6KMNfVKq8o%2BmJOl7LVkSLu2%2B%2BCJMmgRffbXl8%2B3aQffu4Tj0UPv1SenAAChJ2sKKFTB1KkyeHILfe%2B9t%2BXy9etC5M5x0EvziF2HUT1J6MQBKUswtXQrTpoVjyhR4%2B%2B0tL%2BsmEnDwwdC1K%2BTlwRFHQK1a0dUr6cczAEpSjJSUwAcfwMyZ8PrrMGMGfPLJ1q9r2RKOOy6M9B17bFjQISlzGAAlKUMlk7BwIcydC2%2B8AXPmhGP16q1fe9BBYdHGUUfBMcfA7rtXfb2Sqo4BUJIywKZN8K9/wVtvhWPevHAsW7b1a%2BvWDTtwdOoULud27OguHFLcGAAlqYx02Ank66/h/fdh/vxwvP02vPtu%2BSN7NWqE0b2f/xwOOww6dICf/hSqV6/6uiWlDncCkaRyRL0TSDIZFme8/344PvwwfH3vva3bsHwnKyuEvZ/9LByHHAJt20Lt2lVbu6TU5wigJEVo9Wr47LOwEOOjj0LQ%2B%2Bgj%2BPhjKCzc9nn77BPC3kEHhT58bdvCAQfYeFnSjvGvCkmqZGvWwKefhpD36aebb3/8MXz55bbPSySgRQto3RoOPBBatQqXb3/609CLT5J2lgFQkirAxo2wYEEYwfvwwxDuvgt7ixZ9/7kNG8L%2B%2B4cRvFatQguWAw6A/faDXXapmvolxYsBUJLKmjMH7rgjbHYL0KcP/O53YQUFYW7eZ59tXoDx3fHZZyEEbstuu4VQt%2B%2B%2BIdh9F/gOOAB23bUKfi5JKsNFIJL0nQkT4PTTYcMGVgI5QCFQr0ZNnvzlWEau6MbMmfDNN%2BWfXrv25lG8Vq1C0Nt33xD2bKQsKZUYACUJwvDdPvvAf/4DsEUArA8sYg/24XNKqEFWVpiH16bN5uPAA2GPPaBateh%2BBEnaUV4C/hGSySSrVq2KugxJFWDD889T87/hD0IALPu1Pv/h7%2Bc/ze59TqBt2/L3wi2vD5%2Bk1JWdnU0ikYi6jEg4AvgjfNcnTJIkpZ%2Bo%2BnymAgPgj1B2BLB9%2B/bMnTt3p95nZ85duXIlubm5LFy4cKd%2BeXe23qr%2BOXf2PD%2Bf7fsxn1E6/Zw7eu76adOo1a1b6f2VQC6wkHAJGGBo55doeFIHDjssXPItbxSwKmpNhe/pn7Hti%2BLPmJ/PDzs3ziOAXgL%2BERKJROkvbfXq1Xf6/yJ%2BzLn169ffqXN39ntG8XP6%2BVTe94Sd%2B4zS7efcoXN/8YvQTfmdd7Z4uP5/j7dpy5BXToBXwuM1aoR2LW3ahNO%2Ba9%2By774Z%2Bvlsg3/Gtq8q/4z5%2BVTuuZnEAFhB%2BvXrF8m5Vf09o/g5/Xwq73vurHT7OXf43NGjoXPnrfZaSzZpyqqbR3PDlzBjRugUU1gYtmV77z0YM2bza6tVgwYNZtKt2%2BaWL9%2B1e9lrr%2B3vwZvSn08FSqef08%2Bn8r7nzkq33/dU5CXgNBX1PqWpzs9n%2B/yMtuHrr%2BGvf2X5%2BPE0nD2br669liaDBm3RxyWZhIUL4d13w4Dh/Pmh8fNHH8H3rQurVSssNP7fPoD77Qe5udsPh6nE35/t8zP6fn4%2B0XIEME1lZWVxww03kJWVFXUpKcnPZ/v8jLahUSO49lpK%2BvaFJk1IDBy4VRO/RCKM5u21F5x88ubHk8mwtdt3O4F89lnYCeS728XF4fbHH2/9bWvVCkGwVasQClu2DEerVqGJdKrx92f7/Iy%2Bn59PtBwBlKRyVPToRElJ2BKubCj86KOwJ/CCBbB%2B/bbP3X33EAQPPDD0HzzooPC1YcMfXZakmDIASlI5qvLyVEkJ/PvfIRB%2BN3r48cfhdpnWhFtp2jQsQmnXLhxt237/6mRJ%2Bo4BUJLKkSrzk1auhA8%2BCGHwgw/CopP58%2BGLL8p/fc2aIRQeckg4fv7zEA532aVq65aU2gyAklSOVAmA27J6dQiD77wDb78dQuHbb4fVyf%2BrRo0QCtu3h8MPhw4dwiVlt62T4ssAKEll5Ofnk5%2BfT0lJCR9//HHKBsDyJJPw%2Becwbx689Vb4OnduWNj8v%2BrXD2HwiCOgU6dwu169Ki9ZUkT8/780deONN9KqVSvq1q3LbrvtRpcuXZg9e3bUZaWEDRs2cM0119CmTRvq1q1L8%2BbNOffcc1m8eHHUpaWMsWPH0rVrVxo1akQikaCgoCDqklJGv379eP/993d6l4EoJRLQogWccQbceis8/zwsXRpC4ZNPwlVXwVFHQZ064dLySy/BDTfACSeElcYdOoTXTJhQ/kgiwNSpUznllFNo3rw5iUSC8ePHV%2BnPmOqGDBlC%2B/btyc7OpkmTJvTo0YOPPvoo6rJSxv3330/btm1Lmz937NiRF154IeqyYskAmKYOOOAAhg8fzvz585k%2BfTr77LMPeXl5LFu2LOrSIrdmzRrmzZvH9ddfz7x58xg7diwff/wx3bt3j7q0lFFUVMQRRxzB0KFDoy5FlSyRgL33DqHwjjtg6tQQ7ubNg3vvhV/%2BMrSz2bgxNLi%2B6y445RRo0CBcMr72Wpg0CdauDe9XVFREu3btGD58eLQ/WIqaMmUK/fr1Y9asWUyaNImNGzeSl5dHUVFR1KWlhD333JOhQ4fyxhtv8MYbb3D88cdz6qmn8t5770VdWux4CThDfDdf6eWXX6Zz585Rl5Ny5s6dy2GHHcYXX3zBXnvtFXU5KePzzz%2BnRYsWvPXWWxx88MFRl5NSUn0OYEX74guYNi0ExFdfDe1qysrKCqOHeXlw4omhFU21agnGjRtHjx49oik6DSxbtowmTZowZcoUjj766KjLSUkNGjTgzjvvpG/fvlGXEis2gs4A69evZ8SIEeTk5NCuXbuoy0lJhYWFJBIJdt1116hLkVLS3nuH41e/Cvf/858QBF95BV5%2BOdx/%2BeVwXH017LEHwAhmz25Gly7OH9yWwv9eS2/QoEHElaSekpIS/vnPf1JUVETHjh2jLid2HAFMYxMmTODss89mzZo17L777owfP5727dtHXVbKWbduHUceeSStWrXisccei7qclOII4LbFbQTw%2BySToQ3NSy/Biy/C5Mmwbt3m57Oy4PjjoXv3cDRvHl2tqSSZTHLqqaeyYsUKpk2bFnU5KWP%2B/Pl07NiRdevWUa9ePUaPHs3JZbfUUZVwDmAaGDVqFPXq1Ss9vvuL5LjjjqOgoIAZM2Zw4okn0rNnT5YuXRpxtVVvW58PhAUhZ599Nps2beK%2B%2B%2B6LsMrofN/nI%2B2IRCI0mP6//wsLS5Yvh4kTAe6ladMiiovhhRfgkkvCyGDHjnDnnfCvf0VdebQuu%2Bwy3nnnHR5//PGoS0kpLVu2pKCggFmzZnHJJZdw3nnn8f6Z4BNBAAAYsklEQVT770ddVuw4ApgGVq1axVdffVV6f4899qB27dpbvW7//ffnwgsvZPDgwVVZXuS29fls2LCBnj178q9//YtXX32VhjHdN%2Bv7fn8cAdw2RwC3L5FIMHbsOFq27MHTT8Mzz8CsWVu%2B5pBDoGfPcPzkJ9HUGYX%2B/fszfvx4pk6dSosWLaIuJ6V16dKFfffdlwcffDDqUmLFOYBpIDs7m%2Bzs7O2%2BLplMUlxcXAUVpZbyPp/vwt8nn3zC5MmTYxv%2BYMd/f6SdkUhA69bhGDwYFi%2BG8ePhqafgtddCP8K33grPHXYY9O4NvXpBs2ZRV145kskk/fv3Z9y4cbz22muGvx0Q13%2B7omYATENFRUXcdtttdO/end13351vvvmG%2B%2B67j0WLFnHWWWdFXV7kNm7cyJlnnsm8efOYMGECJSUlLFmyBAgTsWu5USrLly/n3//%2Bd2lvxO/6lDVr1oxmmfov8w4q2whaW1u9ejWffvpp6f0FCxZQUFBAgwYN2GuvvWjeHC69NBzLlsG4cfDEE2He4Jw54Rg4ELp0gT594LTToG7dCH%2BgCtavXz9Gjx7N008/TXZ2dunfPTk5OeVeuYmb6667jpNOOonc3FxWrVrFmDFjeO2115gY5hSoKiWVdtauXZs87bTTks2bN0/WqlUrufvuuye7d%2B%2BenDNnTtSlpYQFCxYkgXKPyZMnR11eSnj44YfL/XxuuOGGqEtLGYWFhUkgWVhYGHUpKWXy5Mnl/u6cd95533vekiXJ5D33JJOHH55MhmUl4ahXL5m84IJkcurUZHLTpqr5GSrTtv7uefjhh6MuLSVceOGFyb333jtZq1atZOPGjZOdO3dOvvTSS1GXFUvOAZSkcjgHsPJ89hk89hg8%2BuiWC0X23x/69oXzz4emTSMrT4oFA6AklcMAWPmSSZg%2BHR55BP7xD/hus4waNeDUU%2BG3vw3tZarZr0KqcAZASSqHAbBqrV4d5gr%2B5S9briTef//QXuaCC8A%2B7lLFMQBKUjkMgNGZPx8eeABGjoRVq8JjdeqEXUouvxx%2B%2BtNo65MygQFQksphAIze6tUwahTk54dQ%2BJ0TToArrgh7EicS0dUnpTMDoCSVwwCYOpJJmDoV7r4bnn4aNm0Kj7duDYMGwTnnhO3oJO04A6AklcMAmJoWLIB77oG//W3z5eHdd4cBA8KiEf9TSTvGAChJ5TAAprbCwrBg5M9/hv/8JzyWkwOXXRbCYKNG0dYnpToX10tSGfn5%2BbRu3Zr27dtHXYq%2BR04OXHll6CP40EPQqlUIhbfdBnvvDVddBWW2wJb0PxwBlKRyOAKYXjZtCtvO3X47zJsXHqtdO1wWvvrqzN17WNpZjgBKktJetWpwxhnwxhvw/PPQoQOsXQvDhsFPfhJC4NdfR12llDoMgJKkjJFIwEknwcyZ8MILm4PgnXdCixZw442wcmXUVUrRMwBKkjJOIhH6BM6cCRMmwCGHhL6CN90URgT//GcoLo66Sik6BkBJUsZKJOAXvwiXhp94Alq2hG%2B%2BCY2kW7WC0aM39xWU4sQAKEnKeNWqwVlnwbvvwogR0Lw5fP55aCLdoQNMmRJ1hVLVMgBKkmKjRg246CL45BO49VbIzg6jg8ceC6efDp99FnWFUtUwAEqSYqdOHfjd7%2BDTT%2BGSS8II4bhxYXu5a6/dvMuIlKkMgJJUho2g46VJE7jvPnjnHcjLg/Xr4Q9/CHMFR44M%2BxBLmchG0JJUDhtBx08yGVYMDxwYRgYBjjgC8vOhXbtoa5MqmiOAkiQRVgyfckpYKHL77eEy8euvw6GHhlXD9g9UJjEASpJURlYWDB4MH34IZ54JJSWhb%2BCBB8JTT3lZWJnBAChJUjlyc%2BGf/4SJE2HffWHx4hAIu3eHf/876uqkH8cAKCmtjB07lq5du9KoUSMSiQQFBQVbvaa4uJj%2B/fvTqFEj6tatS/fu3Vm0aFEE1SoTdO0K8%2BfD738PNWuGeYKtW8O999pEWunLACgprRQVFXHEEUcwdOjQbb5mwIABjBs3jjFjxjB9%2BnRWr15Nt27dKCkpqcJKlUlq14ZbboGCgrAwpKgILr8cjjwSPvgg6uqkH85VwJLS0ueff06LFi146623OPjgg0sfLywspHHjxowcOZJevXoBsHjxYnJzc3n%2B%2Befp2rXrDr2/q4C1LZs2wYMPwjXXhH6BtWqFPYavvDI0mpbSgSOAkjLKm2%2B%2ByYYNG8jLyyt9rHnz5hx00EHMmDEjwsqUKapVC82j33sPTjop9A4cPBg6doT334%2B6OmnHGAAlZZQlS5ZQq1Ytdtttty0eb9q0KUuWLNnmecXFxaxcuXKLQ/o%2Bubnw3HPwyCOw665hS7lDDoE77wwrh6VUZgCUlLJGjRpFvXr1So9p06bt9Hslk0kSicQ2nx8yZAg5OTmlR25u7k5/L8VHIgHnnRdGA08%2BOYwGXn112Fv4X/%2BKujpp2wyAklJW9%2B7dKSgoKD1%2B/vOfb/ecZs2asX79elasWLHF40uXLqVp06bbPG/w4MEUFhaWHgsXLvzR9Ss%2BmjcPq4P/8heoVw%2BmTw%2B7hzz0kH0DlZoMgJJSVnZ2Nvvtt1/pUbt27e2ec%2Bihh1KzZk0mTZpU%2BtiXX37Ju%2B%2B%2BS6dOnbZ5XlZWFvXr19/ikH6IRAJ%2B/euwr/BRR8Hq1dC3b%2Bgd%2BM03UVcnbckAKCmtLF%2B%2BnIKCAt7/72z7jz76iIKCgtL5fTk5OfTt25dBgwbxyiuv8NZbb/GrX/2KNm3a0KVLlyhLV0y0aAGTJ8PQoaFv4Nix0LYtvPpq1JVJmxkAJaWVZ555hkMOOYRf/OIXAJx99tkccsghPPDAA6WvGTZsGD169KBnz54cccQR1KlTh2effZbq1atHVbZipnr10CZm1ixo2TLsItKlC1x3HWzYEHV1kn0AJalc9gFURSkqgiuuCPMDIbSLefxx2HvvaOtSvDkCKElSJapbF0aMgCeegJwcmDkTDj4Yxo%2BPujLFmQFQkqQqcNZZYSu5Dh3g22/htNPCyOD69VFXpjgyAEqSVEX22QemToWBA8P9P/8ZjjkG7DqkqmYAlKQy8vPzad26Ne3bt4%2B6FGWoWrXgj3%2BEp58OO4jMmhV2ECnTuUiqdC4CkaRyuAhEVWHBgtAncN680Efw5pvDSuFqDs%2BokvkrJklSRFq0gNdfDw2kk0m4/no4/XQoLIy6MmU6A6AkSRHaZZfQIuavf4WsrHBpuEMH%2BOCDqCtTJjMASpKUAvr2hWnTYM894aOPQgh85pmoq1KmMgBKkpQi2reHN9%2BEo4%2BGVaugRw%2B47bZweViqSAZASZJSSJMm8PLLcOmlIfj9/vfQuzesXRt1ZcokBkBJklJMzZqQnw8PPgg1asCYMXDUUWFPYakiGAAlSUpRF18cRgMbNgyXhtu3Dy1jpB/LAChJUgo75hiYPRtatw4jgEcd5T7C%2BvEMgJJUhjuBKBXtuy/MmAF5ebBmTegVOGyYi0O089wJRJLK4U4gSkUbN0L//vDAA%2BF%2Bv35hP%2BEaNaKtS%2BnHEUBJktJEjRpw331w111h67j8fDjtNCgqiroypRsDoCRJaSSRgEGD4J//DLuITJgAxx8PS5dGXZnSiQFQkqQ0dMYZ8MorYYXwnDnQqRN8%2BmnUVSldGAAlSUpTnTqFxSH77AOffQZHHBHaxUjbYwCUJCmNHXAAzJwJhxwSLgMfe2zoHSh9HwOgJElprlkzeO016NwZVq%2BGk0%2BGJ56IuiqlMgOgJEkZoH59eO45OOss2LABzj47bCUnlccAKEll2Aha6SwrCx5/HH7729Ak%2Bre/hSFDoq5KqchG0JJUDhtBK50lk3D99XDbbeH%2B1VfD0KGhhYwEjgBKkpRxEgm49dbQMBrgjjvCriGbNkVbl1KHAVCSpAw1aBCMGBEC4f33wwUXhO3kJAOgJEkZ7KKL4LHHoHp1ePRR6N07LBJRvBkAJUnKcL17w5NPQs2aYQu5s86C4uKoq1KUDICSJMVAjx7w9NNhpfDTT8Ppp8O6dVFXpagYACVJiomTTgq9AmvXhuefD6Fw7dqoq1IUDICSJMVI584h/NWpAy%2B%2BCKeeagiMIwOgJEkxc%2Byx8MILULcuTJpkCIwjA6AkleFOIIqLo4/eMgT26OGcwDhxJxBJKoc7gSgupk6Fk0%2BGoqIwR3DcuLBQRJnNEUBJkmLs6KM3Lwx54YXQImb9%2BqirUmUzAEqSFHPHHAPPPgu77BK%2B9u7tjiGZzgAoSZLo3BnGj4dateCpp%2BD886GkJOqqVFkMgJLSyoYNG7jmmmto06YNdevWpXnz5px77rksXrx4i9etWLGCPn36kJOTQ05ODn369OHbb7%2BNqGopPXTtGnYKqVEDRo2CSy4BVwpkJgOgpLSyZs0a5s2bx/XXX8%2B8efMYO3YsH3/8Md27d9/idb1796agoICJEycyceJECgoK6NOnT0RVS%2Bmje/cQ/qpVg7/8BQYNMgRmIlcBS0p7c%2BfO5bDDDuOLL75gr7324oMPPqB169bMmjWLDh06ADBr1iw6duzIhx9%2BSMuWLbf7nq4CVtw98ghccEG4fcMNcOONUVajiuYIoKS0V1hYSCKRYNdddwVg5syZ5OTklIY/gMMPP5ycnBxmzJhR7nsUFxezcuXKLQ4pzs4/H%2B65J9y%2B6Sa4%2B%2B5Iy1EFMwBKSmvr1q3j2muvpXfv3qUjdUuWLKFJkyZbvbZJkyYsWbKk3PcZMmRI6XzBnJwccnNzK7VuKR307w%2B33BJuDxgAf/97tPWo4hgAJaW0UaNGUa9evdJj2rRppc9t2LCBs88%2Bm02bNnHfffdtcV4ikdjqvZLJZLmPAwwePJjCwsLSY%2BHChRX7g0hp6ne/g4EDw%2B0LL4Snn462HlWMGlEXIEnfp3v37ltcyt1jjz2AEP569uzJggULePXVV7eYp9esWTO%2B%2Buqrrd5r2bJlNG3atNzvk5WVRZbbH0hbSSTgrrtg%2BfIwL7BXL3jxxdA7UOnLACgppWVnZ5Odnb3FY9%2BFv08%2B%2BYTJkyfTsGHDLZ7v2LEjhYWFzJkzh8MOOwyA2bNnU1hYSKdOnaqsdilTJBJhRfDy5fDMM2Gl8NSp0K5d1JVpZ7kKWFJa2bhxI2eccQbz5s1jwoQJW4zoNWjQgFq1agFw0kknsXjxYh588EEALr74Yvbee2%2BeffbZHfo%2BrgKWtrZ2LZx4Ygh/zZrBjBnQokXUVWlnGAAlpZXPP/%2BcFtv4F2fy5Mkce%2ByxACxfvpzLL7%2BcZ555BgiXkocPH166Unh7DIBS%2Bb79Nlz%2Bfecd2H9/eP11aNw46qr0QxkAJakcBkBp2xYvhk6d4Isv4LDD4NVXoW7dqKvSD%2BEqYEmS9IM0bw4TJ0KDBjBnDpx9NmzcGHVV%2BiEMgJIk6Qdr1QqefRZ22QUmTIDLLnPLuHRiAJQkSTulUycYPTqsEn7wQRg6NOqKtKMMgJJURn5%2BPq1bt6Z9%2B/ZRlyKlhdNO27xl3HXXhUCo1OciEEkqh4tApB/myivhj3%2BEWrVg0iQ4%2BuioK9L3cQRQkiT9aHfcAWecAevXQ48e8PHHUVek72MAlCRJP1q1ajByJHToACtWwMknw9dfR12VtsUAKEmSKkTt2mGruH32gc8%2BC/MDi4ujrkrlMQBKkqQK06QJPPcc1K8P06fDxRfbHiYVGQAlSVKFat0annwSqleHRx%2B1PUwqMgBKkqQKd8IJcO%2B94fZ118HYsdHWoy0ZACVJUqW45JKwQwhAnz5QUBBtPdrMAChJZdgIWqpYw4ZBXh6sWQPdu8NXX0VdkcBG0JJULhtBSxXn229De5iPPw7bx736KmRlRV1VvDkCKEmSKtWuu8Kzz4avM2bApZe6MjhqBkBJklTpDjgAxowJDaMfemjzAhFFwwAoSZKqRNeuYcs4gIEDYfLkaOuJMwOgJEmqMgMHhhXBJSVw1lnw%2BedRVxRPBkBJklRlEgl48EE49FD45puwXdyaNVFXFT8GQEmSVKVq14Zx46Bx49Ab0O3iqp4BUJIkVbncXPjnP8N2caNGwd13R11RvBgAJUlSJI45Bv74x3D7yith6tRo64kTA6AkleFOIFLVuvxy6N07LArp2RMWL466onhwJxBJKoc7gUhVZ80a6NgR3nkn7BQyeTLUqhV1VZnNEUBJkhSpOnXgqacgJyfsFHLVVVFXlPkMgJIkKXL77QePPhpu33MP/OMf0daT6QyAkiQpJXTvDtdeG2737QsffhhtPZnMAChJklLGLbfAccdBURGccUb4qopnAJQkSSmjRg14/HHYfXd4/3245BKbRFcGA6AkSUopTZvCmDGhSfTIkfC3v0VdUeYxAEqSpJRz9NFw663hdv/%2B8Pbb0daTaQyAklSGjaCl1HH11XDyybBuXWgSvWpV1BVlDhtBS1I5bAQtpYZvvoGDD4ZFi%2BCcc8Il4UQi6qrSnyOAkiQpZTVsuHk%2B4KhR8PDDUVeUGQyAkiQppR1xRGgPA3DZZfDee9HWkwkMgJIkKeVdcw3k5cHatdCrV9g/WDvPACgp7dx44420atWKunXrsttuu9GlSxdmz569xWtWrFhBnz59yMnJIScnhz59%2BvDtt99GVLGkH6tatTD/r1mzMAJ4xRVRV5TeDICS0s4BBxzA8OHDmT9/PtOnT2efffYhLy%2BPZcuWlb6md%2B/eFBQUMHHiRCZOnEhBQQF9%2BvSJsGpJP1aTJpsXgYwYAU8%2BGXVF6ctVwJLS3ncrdl9%2B%2BWU6d%2B7MBx98QOvWrZk1axYdOnQAYNasWXTs2JEPP/yQli1b7vB7ugpYSj2DB8PQobDrrqE/4F57RV1R%2BnEEUFJaW79%2BPSNGjCAnJ4d27doBMHPmTHJyckrDH8Dhhx9OTk4OM2bMiKpUSRXk5puhQwf49tvQGmbjxqgrSj8GQElpacKECdSrV49ddtmFYcOGMWnSJBo1agTAkiVLaNKkyVbnNGnShCVLlpT7fsXFxaxcuXKLQ1JqqlkTRo%2BG7GyYPh1uuy3qitKPAVBSShs1ahT16tUrPaZNmwbAcccdR0FBATNmzODEE0%2BkZ8%2BeLF26tPS8RDmdYpPJZLmPAwwZMqR0wUhOTg65ubmV8wNJqhA/%2BQncf3%2B4ffPN4OD%2BD%2BMcQEkpbdWqVXz11Vel9/fYYw9q16691ev2339/LrzwQgYPHsxDDz3EwIEDt1r1u%2BuuuzJs2DAuuOCCrc4vLi6muLi49P7KlSvJzc11DqCU4vr0gcceg332gYICyMmJuqL0UCPqAiTp%2B2RnZ5Odnb3d1yWTydIA17FjRwoLC5kzZw6HHXYYALNnz6awsJBOnTqVe35WVhZZWVkVV7ikKpGfD6%2B/DgsWhCbRI0dGXVF68BKwpLRSVFTEddddx6xZs/jiiy%2BYN28ev/71r1m0aBFnnXUWAAceeCAnnngiF110EbNmzWLWrFlcdNFFdOvWbYdWAEtKH/XrhxHAatXC1zFjoq4oPRgAJaWV6tWr8%2BGHH3LGGWdwwAEH0K1bN5YtW8a0adP46U9/Wvq6UaNG0aZNG/Ly8sjLy6Nt27aMdGhAykidOsHvfx9uX3IJfPlltPWkA%2BcASlI57AMopZeNG6FzZ%2BjePewSUs0hru/lHEBJkpT2atSAyZMNfjvKj0mSJGUEw9%2BO86OSJEmKGQOgJJWRn59P69atad%2B%2BfdSlSFKlcRGIJJXDRSCSMpkjgJIkSTFjAJQkSYoZA6AkSVLMGAAlSZJixgAoSZIUMwZASZKkmDEASpIkxYwBUJIkKWYMgJJUhjuBSIoDdwKRpHK4E4ikTOYIoCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKkiTFjAFQkiQpZgyAkiRJMWMAlKQybAQtKQ5sBC1J5bARtKRM5gigJElSzBgAJUmSYsYAKEmSFDMGQEmSpJgxAEqSJMWMAVCSJClmDICSJEkxYwCUJEmKGQOgJJXhTiCS4sCdQCSpHO4EIimTOQIoSZIUMwZASZKkmDEASpIkxYxzACWpHMlkklWrVpGdnU0ikYi6HEmqUAZASZKkmPESsCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKkiTFjAFQkiQpZgyAkiRJMWMAlCRJihkDoCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKkiTFjAFQkiQpZgyAkiRJMWMAlCRJihkDoCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKkiTFjAFQkiQpZgyAkiRJMWMAlCRJihkDoCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKkiTFjAFQkiQpZgyAkiRJMWMAlCRJihkDoCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKkiTFjAFQkiQpZgyAkiRJMWMAlCRJihkDoCRJUswYACVJkmLGAChJkhQzBkBJkqSYMQBKkiTFjAFQkiQpZgyAkiRJMWMAlCRJihkDoCRJUswYACVJkmLm/wPmxn8VuOLmsgAAAABJRU5ErkJggg%3D%3D'}