Learn more

Refine search


Results (5 matches)

  Download to        
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
3125.a.3125.1 3125.a \( 5^{5} \) $0$ $\Z/5\Z$ \(\mathsf{CM}\) $[0,0,0,4]$ $[0,0,0,0,3125]$ $[0,0,0]$ $y^2 + y = x^5$
10000.b.800000.1 10000.b \( 2^{4} \cdot 5^{4} \) $0$ $\Z/10\Z$ \(\mathsf{CM}\) $[0,0,0,1]$ $[0,0,0,0,800000]$ $[0,0,0]$ $y^2 = x^5 + 1$
50000.a.200000.1 50000.a \( 2^{4} \cdot 5^{5} \) $1$ $\Z/5\Z$ \(\mathsf{CM}\) $[0,0,0,8]$ $[0,0,0,0,200000]$ $[0,0,0]$ $y^2 + y = 2x^5$
50625.a.253125.1 50625.a \( 3^{4} \cdot 5^{4} \) $1$ $\mathsf{trivial}$ \(\mathsf{CM}\) $[0,0,0,324]$ $[0,0,0,0,253125]$ $[0,0,0]$ $y^2 + y = x^5 - 1$
160000.c.800000.1 160000.c \( 2^{8} \cdot 5^{4} \) $1$ $\Z/2\Z$ \(\mathsf{CM}\) $[0,0,0,1]$ $[0,0,0,0,800000]$ $[0,0,0]$ $y^2 = x^5 - 1$
  Download to