Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
256.a.512.1 |
256.a |
\( 2^{8} \) |
\( - 2^{9} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/10\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathsf{CM}\) |
✓ |
$E_4$ |
|
✓ |
|
$C_4$ |
$D_4$ |
$6$ |
$2$ |
2.180.3, 3.540.6 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(26.841829\) |
\(0.134209\) |
$[26,-2,40,2]$ |
$[52,118,-36,-3949,512]$ |
$[742586,\frac{129623}{4},-\frac{1521}{8}]$ |
$y^2 + y = 2x^5 - 3x^4 + x^3 + x^2 - x$ |
4096.e.524288.1 |
4096.e |
\( 2^{12} \) |
\( - 2^{19} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathsf{CM}\) |
✓ |
$E_4$ |
|
✓ |
|
$C_4$ |
$D_4$ |
$2$ |
$2$ |
2.180.3, 3.540.6 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(7.402544\) |
\(0.925318\) |
$[26,-2,40,2]$ |
$[208,1888,-2304,-1010944,524288]$ |
$[742586,\frac{129623}{4},-\frac{1521}{8}]$ |
$y^2 = x^5 - 2x^4 - 2x^2 - x$ |
262144.b.524288.1 |
262144.b |
\( 2^{18} \) |
\( 2^{19} \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\Q\) |
|
$J(E_4)$ |
|
✓ |
|
$C_2$ |
$D_4$ |
$2$ |
$2$ |
2.90.3, 3.270.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.970077\) |
\(7.048011\) |
\(3.418555\) |
$[26,-2,40,2]$ |
$[208,1888,-2304,-1010944,524288]$ |
$[742586,\frac{129623}{4},-\frac{1521}{8}]$ |
$y^2 = x^5 + 2x^3 + 2x$ |
262144.c.524288.1 |
262144.c |
\( 2^{18} \) |
\( 2^{19} \) |
$1$ |
$2$ |
$\Z/2\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\Q\) |
|
$J(E_4)$ |
|
✓ |
|
$C_2$ |
$D_4$ |
$4$ |
$2$ |
2.90.3, 3.270.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.759196\) |
\(7.048011\) |
\(2.675411\) |
$[26,-2,40,2]$ |
$[208,1888,-2304,-1010944,524288]$ |
$[742586,\frac{129623}{4},-\frac{1521}{8}]$ |
$y^2 = x^5 - 2x^3 + 2x$ |