Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
1320.a.2640.1 |
1320.a |
\( 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
\( 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(17.746741\) |
\(0.554586\) |
$[63768,10392,220729308,10560]$ |
$[31884,42356162,75020763840,149479393726079,2640]$ |
$[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ |
$y^2 + (x^3 + x)y = -x^6 + 9x^4 - 40x^2 + 55$ |
2640.a.2640.1 |
2640.a |
\( 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
\( - 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$0$ |
$0$ |
2.90.6, 3.90.1 |
|
|
$2$ |
\( 1 \) |
\(1.000000\) |
\(6.936322\) |
\(0.867040\) |
$[63768,10392,220729308,10560]$ |
$[31884,42356162,75020763840,149479393726079,2640]$ |
$[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ |
$y^2 + (x^3 + x)y = -x^6 - 10x^4 - 40x^2 - 55$ |
11880.a.641520.1 |
11880.a |
\( 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5 \cdot 11 \) |
$1$ |
$3$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.6, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.318632\) |
\(4.286194\) |
\(0.706489\) |
$[63768,10392,220729308,10560]$ |
$[95652,381205458,2025560623680,12107830891812399,641520]$ |
$[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ |
$y^2 + (x^3 + x)y = 9x^4 + 119x^2 + 495$ |
23760.a.641520.1 |
23760.a |
\( 2^{4} \cdot 3^{3} \cdot 5 \cdot 11 \) |
\( 2^{4} \cdot 3^{6} \cdot 5 \cdot 11 \) |
$1$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.6, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.318632\) |
\(6.701044\) |
\(1.104526\) |
$[63768,10392,220729308,10560]$ |
$[95652,381205458,2025560623680,12107830891812399,641520]$ |
$[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ |
$y^2 + (x^3 + x)y = -10x^4 + 119x^2 - 495$ |