Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
1320.a.2640.1 1320.a \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[63768,10392,220729308,10560]$ $[31884,42356162,75020763840,149479393726079,2640]$ $[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ $y^2 + (x^3 + x)y = -x^6 + 9x^4 - 40x^2 + 55$
2640.a.2640.1 2640.a \( 2^{4} \cdot 3 \cdot 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[63768,10392,220729308,10560]$ $[31884,42356162,75020763840,149479393726079,2640]$ $[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ $y^2 + (x^3 + x)y = -x^6 - 10x^4 - 40x^2 - 55$
11880.a.641520.1 11880.a \( 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[63768,10392,220729308,10560]$ $[95652,381205458,2025560623680,12107830891812399,641520]$ $[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ $y^2 + (x^3 + x)y = 9x^4 + 119x^2 + 495$
23760.a.641520.1 23760.a \( 2^{4} \cdot 3^{3} \cdot 5 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[63768,10392,220729308,10560]$ $[95652,381205458,2025560623680,12107830891812399,641520]$ $[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ $y^2 + (x^3 + x)y = -10x^4 + 119x^2 - 495$
  displayed columns for results