Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
73728.c.884736.1 73728.c \( 2^{13} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = x^5 + 5x^3 + 6x$
73728.d.884736.1 73728.d \( 2^{13} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = 2x^5 - 5x^3 + 3x$
147456.c.884736.1 147456.c \( 2^{14} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = 2x^5 + 5x^3 + 3x$
147456.e.884736.1 147456.e \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = x^5 - 5x^3 + 6x$
  displayed columns for results