Minimal equation
Minimal equation
Simplified equation
| $y^2 = x^5 + x^3 - 2x + 1$ | (homogenize, simplify) |
| $y^2 = x^5z + x^3z^3 - 2xz^5 + z^6$ | (dehomogenize, simplify) |
| $y^2 = x^5 + x^3 - 2x + 1$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(85280\) | \(=\) | \( 2^{5} \cdot 5 \cdot 13 \cdot 41 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(682240\) | \(=\) | \( 2^{8} \cdot 5 \cdot 13 \cdot 41 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(74\) | \(=\) | \( 2 \cdot 37 \) |
| \( I_4 \) | \(=\) | \(-392\) | \(=\) | \( - 2^{3} \cdot 7^{2} \) |
| \( I_6 \) | \(=\) | \(-5370\) | \(=\) | \( - 2 \cdot 3 \cdot 5 \cdot 179 \) |
| \( I_{10} \) | \(=\) | \(-2665\) | \(=\) | \( - 5 \cdot 13 \cdot 41 \) |
| \( J_2 \) | \(=\) | \(148\) | \(=\) | \( 2^{2} \cdot 37 \) |
| \( J_4 \) | \(=\) | \(1958\) | \(=\) | \( 2 \cdot 11 \cdot 89 \) |
| \( J_6 \) | \(=\) | \(2716\) | \(=\) | \( 2^{2} \cdot 7 \cdot 97 \) |
| \( J_8 \) | \(=\) | \(-857949\) | \(=\) | \( - 3 \cdot 285983 \) |
| \( J_{10} \) | \(=\) | \(-682240\) | \(=\) | \( - 2^{8} \cdot 5 \cdot 13 \cdot 41 \) |
| \( g_1 \) | \(=\) | \(-277375828/2665\) | ||
| \( g_2 \) | \(=\) | \(-49589287/5330\) | ||
| \( g_3 \) | \(=\) | \(-929551/10660\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) | \((1 : -1 : 1)\) |
| \((1 : 1 : 1)\) | \((1 : -46 : 4)\) | \((1 : 46 : 4)\) | \((4 : -339 : 9)\) | \((4 : 339 : 9)\) | |
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) | \((1 : -1 : 1)\) |
| \((1 : 1 : 1)\) | \((1 : -46 : 4)\) | \((1 : 46 : 4)\) | \((4 : -339 : 9)\) | \((4 : 339 : 9)\) | |
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((0 : -1/2 : 1)\) | \((0 : 1/2 : 1)\) | \((-1 : -1/2 : 1)\) | \((-1 : 1/2 : 1)\) | \((1 : -1/2 : 1)\) |
| \((1 : 1/2 : 1)\) | \((1 : -23 : 4)\) | \((1 : 23 : 4)\) | \((4 : -339/2 : 9)\) | \((4 : 339/2 : 9)\) | |
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 + z^3\) | \(0.155688\) | \(\infty\) |
| \((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.178641\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 + z^3\) | \(0.155688\) | \(\infty\) |
| \((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.178641\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 1/2 : 1) + (1 : -1/2 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 + 1/2z^3\) | \(0.155688\) | \(\infty\) |
| \((1 : -1/2 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-1/2z^3\) | \(0.178641\) | \(\infty\) |
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(2\) |
| Mordell-Weil rank: | \(2\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 0.023037 \) |
| Real period: | \( 12.12601 \) |
| Tamagawa product: | \( 6 \) |
| Torsion order: | \( 1 \) |
| Leading coefficient: | \( 1.676108 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(5\) | \(8\) | \(6\) | \(-1^*\) | \(1\) | no | |
| \(5\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 3 T + 5 T^{2} )\) | yes | |
| \(13\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 3 T + 13 T^{2} )\) | yes | |
| \(41\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 41 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.6.1 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).