Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^2 + x)y = x^5 + x^4 + 3x^3 - 4x^2 - 4x + 3$ | (homogenize, simplify) |
$y^2 + (x^2z + xz^2)y = x^5z + x^4z^2 + 3x^3z^3 - 4x^2z^4 - 4xz^5 + 3z^6$ | (dehomogenize, simplify) |
$y^2 = 4x^5 + 5x^4 + 14x^3 - 15x^2 - 16x + 12$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(826\) | \(=\) | \( 2 \cdot 7 \cdot 59 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-11564\) | \(=\) | \( - 2^{2} \cdot 7^{2} \cdot 59 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(92\) | \(=\) | \( 2^{2} \cdot 23 \) |
\( I_4 \) | \(=\) | \(-554591\) | \(=\) | \( - 17^{2} \cdot 19 \cdot 101 \) |
\( I_6 \) | \(=\) | \(-3126961\) | \(=\) | \( -3126961 \) |
\( I_{10} \) | \(=\) | \(1480192\) | \(=\) | \( 2^{9} \cdot 7^{2} \cdot 59 \) |
\( J_2 \) | \(=\) | \(23\) | \(=\) | \( 23 \) |
\( J_4 \) | \(=\) | \(23130\) | \(=\) | \( 2 \cdot 3^{2} \cdot 5 \cdot 257 \) |
\( J_6 \) | \(=\) | \(-104176\) | \(=\) | \( - 2^{4} \cdot 17 \cdot 383 \) |
\( J_8 \) | \(=\) | \(-134348237\) | \(=\) | \( - 107 \cdot 1255591 \) |
\( J_{10} \) | \(=\) | \(11564\) | \(=\) | \( 2^{2} \cdot 7^{2} \cdot 59 \) |
\( g_1 \) | \(=\) | \(6436343/11564\) | ||
\( g_2 \) | \(=\) | \(140711355/5782\) | ||
\( g_3 \) | \(=\) | \(-13777276/2891\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (1 : 0 : 1),\, (1 : -2 : 1),\, (3 : -42 : 4)\)
Number of rational Weierstrass points: \(3\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{6}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) - (1 : 0 : 0)\) | \(x + z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((-1 : 0 : 1) + (1 : -2 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 - z^3\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) - (1 : 0 : 0)\) | \(x + z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
\((-1 : 0 : 1) + (1 : -2 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 - z^3\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 0 : 1) - (1 : 0 : 0)\) | \(x + z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z + xz^2\) | \(0\) | \(2\) |
\((-1 : 0 : 1) + (1 : -2 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - xz^2 - 2z^3\) | \(0\) | \(6\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 13.17448 \) |
Tamagawa product: | \( 4 \) |
Torsion order: | \( 12 \) |
Leading coefficient: | \( 0.365957 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(2\) | \(2\) | \(1^*\) | \(( 1 + T )( 1 - T + 2 T^{2} )\) | yes | |
\(7\) | \(1\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )( 1 + T + 7 T^{2} )\) | yes | |
\(59\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 59 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.120.3 | yes |
\(3\) | 3.80.1 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).