Properties

Label 826.a.11564.1
Conductor $826$
Discriminant $-11564$
Mordell-Weil group \(\Z/{2}\Z \times \Z/{6}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 + x^4 + 3x^3 - 4x^2 - 4x + 3$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z + x^4z^2 + 3x^3z^3 - 4x^2z^4 - 4xz^5 + 3z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 + 5x^4 + 14x^3 - 15x^2 - 16x + 12$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([3, -4, -4, 3, 1, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![3, -4, -4, 3, 1, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([12, -16, -15, 14, 5, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(826\) \(=\) \( 2 \cdot 7 \cdot 59 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-11564\) \(=\) \( - 2^{2} \cdot 7^{2} \cdot 59 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(92\) \(=\)  \( 2^{2} \cdot 23 \)
\( I_4 \)  \(=\) \(-554591\) \(=\)  \( - 17^{2} \cdot 19 \cdot 101 \)
\( I_6 \)  \(=\) \(-3126961\) \(=\)  \( -3126961 \)
\( I_{10} \)  \(=\) \(1480192\) \(=\)  \( 2^{9} \cdot 7^{2} \cdot 59 \)
\( J_2 \)  \(=\) \(23\) \(=\)  \( 23 \)
\( J_4 \)  \(=\) \(23130\) \(=\)  \( 2 \cdot 3^{2} \cdot 5 \cdot 257 \)
\( J_6 \)  \(=\) \(-104176\) \(=\)  \( - 2^{4} \cdot 17 \cdot 383 \)
\( J_8 \)  \(=\) \(-134348237\) \(=\)  \( - 107 \cdot 1255591 \)
\( J_{10} \)  \(=\) \(11564\) \(=\)  \( 2^{2} \cdot 7^{2} \cdot 59 \)
\( g_1 \)  \(=\) \(6436343/11564\)
\( g_2 \)  \(=\) \(140711355/5782\)
\( g_3 \)  \(=\) \(-13777276/2891\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (1 : 0 : 1),\, (1 : -2 : 1),\, (3 : -42 : 4)\)
All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (1 : 0 : 1),\, (1 : -2 : 1),\, (3 : -42 : 4)\)
All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (1 : -2 : 1),\, (1 : 2 : 1),\, (3 : 0 : 4)\)

magma: [C![-1,0,1],C![1,-2,1],C![1,0,0],C![1,0,1],C![3,-42,4]]; // minimal model
 
magma: [C![-1,0,1],C![1,-2,1],C![1,0,0],C![1,2,1],C![3,0,4]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \times \Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (1 : -2 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (1 : -2 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2\) \(0\) \(2\)
\((-1 : 0 : 1) + (1 : -2 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - xz^2 - 2z^3\) \(0\) \(6\)

2-torsion field: 3.1.59.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 13.17448 \)
Tamagawa product: \( 4 \)
Torsion order:\( 12 \)
Leading coefficient: \( 0.365957 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 - T + 2 T^{2} )\)
\(7\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 7 T^{2} )\)
\(59\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 59 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).