Properties

Label 816.a.13872.1
Conductor $816$
Discriminant $-13872$
Mordell-Weil group \(\Z/{2}\Z \times \Z/{6}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

Show commands: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2)y = -2x^4 + 6x^2 - 8x + 3$ (homogenize, simplify)
$y^2 + (x^3 + x^2z)y = -2x^4z^2 + 6x^2z^4 - 8xz^5 + 3z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 - 7x^4 + 24x^2 - 32x + 12$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([3, -8, 6, 0, -2]), R([0, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![3, -8, 6, 0, -2], R![0, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([12, -32, 24, 0, -7, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(816\) \(=\) \( 2^{4} \cdot 3 \cdot 17 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-13872\) \(=\) \( - 2^{4} \cdot 3 \cdot 17^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(688\) \(=\)  \( 2^{4} \cdot 43 \)
\( I_4 \)  \(=\) \(9592\) \(=\)  \( 2^{3} \cdot 11 \cdot 109 \)
\( I_6 \)  \(=\) \(2944404\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 137 \cdot 199 \)
\( I_{10} \)  \(=\) \(55488\) \(=\)  \( 2^{6} \cdot 3 \cdot 17^{2} \)
\( J_2 \)  \(=\) \(344\) \(=\)  \( 2^{3} \cdot 43 \)
\( J_4 \)  \(=\) \(3332\) \(=\)  \( 2^{2} \cdot 7^{2} \cdot 17 \)
\( J_6 \)  \(=\) \(-80164\) \(=\)  \( - 2^{2} \cdot 7^{2} \cdot 409 \)
\( J_8 \)  \(=\) \(-9669660\) \(=\)  \( - 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23 \)
\( J_{10} \)  \(=\) \(13872\) \(=\)  \( 2^{4} \cdot 3 \cdot 17^{2} \)
\( g_1 \)  \(=\) \(301073291264/867\)
\( g_2 \)  \(=\) \(498667904/51\)
\( g_3 \)  \(=\) \(-592892944/867\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1),\, (-3 : 9 : 1)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1),\, (-3 : 9 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (1 : 0 : 1),\, (-3 : 0 : 1)\)

magma: [C![-3,9,1],C![1,-1,0],C![1,-1,1],C![1,0,0]]; // minimal model
 
magma: [C![-3,0,1],C![1,-1,0],C![1,0,1],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \times \Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 + z^3\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(2x^2 - z^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - 2z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 + z^3\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(2x^2 - z^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - 2z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 4xz^2 + 2z^3\) \(0\) \(2\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(2x^2 - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + 4xz^2 - 4z^3\) \(0\) \(6\)

2-torsion field: \(\Q(\zeta_{12})\)

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 22.16669 \)
Tamagawa product: \( 2 \)
Torsion order:\( 12 \)
Leading coefficient: \( 0.307870 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(4\) \(1\) \(1 + T\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 3 T^{2} )\)
\(17\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 6 T + 17 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).