Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^3 + x^2)y = -2x^4 + 6x^2 - 8x + 3$ | (homogenize, simplify) |
| $y^2 + (x^3 + x^2z)y = -2x^4z^2 + 6x^2z^4 - 8xz^5 + 3z^6$ | (dehomogenize, simplify) |
| $y^2 = x^6 + 2x^5 - 7x^4 + 24x^2 - 32x + 12$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(816\) | \(=\) | \( 2^{4} \cdot 3 \cdot 17 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-13872\) | \(=\) | \( - 2^{4} \cdot 3 \cdot 17^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(688\) | \(=\) | \( 2^{4} \cdot 43 \) |
| \( I_4 \) | \(=\) | \(9592\) | \(=\) | \( 2^{3} \cdot 11 \cdot 109 \) |
| \( I_6 \) | \(=\) | \(2944404\) | \(=\) | \( 2^{2} \cdot 3^{3} \cdot 137 \cdot 199 \) |
| \( I_{10} \) | \(=\) | \(55488\) | \(=\) | \( 2^{6} \cdot 3 \cdot 17^{2} \) |
| \( J_2 \) | \(=\) | \(344\) | \(=\) | \( 2^{3} \cdot 43 \) |
| \( J_4 \) | \(=\) | \(3332\) | \(=\) | \( 2^{2} \cdot 7^{2} \cdot 17 \) |
| \( J_6 \) | \(=\) | \(-80164\) | \(=\) | \( - 2^{2} \cdot 7^{2} \cdot 409 \) |
| \( J_8 \) | \(=\) | \(-9669660\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23 \) |
| \( J_{10} \) | \(=\) | \(13872\) | \(=\) | \( 2^{4} \cdot 3 \cdot 17^{2} \) |
| \( g_1 \) | \(=\) | \(301073291264/867\) | ||
| \( g_2 \) | \(=\) | \(498667904/51\) | ||
| \( g_3 \) | \(=\) | \(-592892944/867\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1),\, (-3 : 9 : 1)\)
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z \oplus \Z/{6}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 + 2xz - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 + z^3\) | \(0\) | \(2\) |
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2 - 2z^3\) | \(0\) | \(6\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 + 2xz - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 + z^3\) | \(0\) | \(2\) |
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2 - 2z^3\) | \(0\) | \(6\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 + 2xz - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + x^2z - 4xz^2 + 2z^3\) | \(0\) | \(2\) |
| \(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(2x^2 - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + x^2z + 4xz^2 - 4z^3\) | \(0\) | \(6\) |
2-torsion field: \(\Q(\zeta_{12})\)
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 1 \) |
| Real period: | \( 22.16669 \) |
| Tamagawa product: | \( 2 \) |
| Torsion order: | \( 12 \) |
| Leading coefficient: | \( 0.307870 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(4\) | \(4\) | \(1\) | \(1^*\) | \(1 + T\) | no | |
| \(3\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 2 T + 3 T^{2} )\) | yes | |
| \(17\) | \(1\) | \(2\) | \(2\) | \(-1\) | \(( 1 - T )( 1 + 6 T + 17 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.180.3 | yes |
| \(3\) | 3.80.1 | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).