Properties

Label 50000.b.800000.1
Conductor $50000$
Discriminant $800000$
Mordell-Weil group \(\Z \oplus \Z/{5}\Z\)
Sato-Tate group $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^6 - 4x^5 + 5x^3 - x$ (homogenize, simplify)
$y^2 + z^3y = x^6 - 4x^5z + 5x^3z^3 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^6 - 16x^5 + 20x^3 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, 5, 0, -4, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, 5, 0, -4, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, -4, 0, 20, 0, -16, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(50000\) \(=\) \( 2^{4} \cdot 5^{5} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(800000\) \(=\) \( 2^{8} \cdot 5^{5} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(100\) \(=\)  \( 2^{2} \cdot 5^{2} \)
\( I_4 \)  \(=\) \(625\) \(=\)  \( 5^{4} \)
\( I_6 \)  \(=\) \(14905\) \(=\)  \( 5 \cdot 11 \cdot 271 \)
\( I_{10} \)  \(=\) \(32\) \(=\)  \( 2^{5} \)
\( J_2 \)  \(=\) \(500\) \(=\)  \( 2^{2} \cdot 5^{3} \)
\( J_4 \)  \(=\) \(0\) \(=\)  \( 0 \)
\( J_6 \)  \(=\) \(80000\) \(=\)  \( 2^{7} \cdot 5^{4} \)
\( J_8 \)  \(=\) \(10000000\) \(=\)  \( 2^{7} \cdot 5^{7} \)
\( J_{10} \)  \(=\) \(800000\) \(=\)  \( 2^{8} \cdot 5^{5} \)
\( g_1 \)  \(=\) \(39062500\)
\( g_2 \)  \(=\) \(0\)
\( g_3 \)  \(=\) \(25000\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : -2 : 0),\, (1 : 2 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1)\)

magma: [C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,1,0]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,-2,0],C![1,2,0]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{5}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2x^2z\) \(0.566737\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0\) \(5\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2x^2z\) \(0.566737\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0\) \(5\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -2 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 - 4x^2z + z^3\) \(0.566737\) \(\infty\)
\((0 : 1 : 1) - (1 : -2 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 + z^3\) \(0\) \(5\)

2-torsion field: 5.1.800000.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.566737 \)
Real period: \( 17.11758 \)
Tamagawa product: \( 5 \)
Torsion order:\( 5 \)
Leading coefficient: \( 1.940235 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(8\) \(5\) \(1\)
\(5\) \(5\) \(5\) \(1\) \(1\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.2 no
\(3\) 3.216.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{5}) \) with defining polynomial \(x^{2} - x - 1\)

Of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{5}}{2}]\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{5}) \)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \R\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);