Properties

Label 482790.a.482790.1
Conductor $482790$
Discriminant $-482790$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -14x^6 + 33x^5 - 61x^4 + 69x^3 - 61x^2 + 33x - 14$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -14x^6 + 33x^5z - 61x^4z^2 + 69x^3z^3 - 61x^2z^4 + 33xz^5 - 14z^6$ (dehomogenize, simplify)
$y^2 = -55x^6 + 132x^5 - 244x^4 + 278x^3 - 244x^2 + 132x - 55$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-14, 33, -61, 69, -61, 33, -14]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-14, 33, -61, 69, -61, 33, -14], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-55, 132, -244, 278, -244, 132, -55]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(482790\) \(=\) \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 19 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-482790\) \(=\) \( - 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 19 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(258956\) \(=\)  \( 2^{2} \cdot 41 \cdot 1579 \)
\( I_4 \)  \(=\) \(284225353\) \(=\)  \( 284225353 \)
\( I_6 \)  \(=\) \(22936728525979\) \(=\)  \( 3546173 \cdot 6468023 \)
\( I_{10} \)  \(=\) \(61797120\) \(=\)  \( 2^{8} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 19 \)
\( J_2 \)  \(=\) \(64739\) \(=\)  \( 41 \cdot 1579 \)
\( J_4 \)  \(=\) \(162788032\) \(=\)  \( 2^{6} \cdot 11 \cdot 79 \cdot 2927 \)
\( J_6 \)  \(=\) \(522481586340\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \cdot 65473883 \)
\( J_8 \)  \(=\) \(1831248013908059\) \(=\)  \( 1282069 \cdot 1428353711 \)
\( J_{10} \)  \(=\) \(482790\) \(=\)  \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 19 \)
\( g_1 \)  \(=\) \(1137181886990894545487699/482790\)
\( g_2 \)  \(=\) \(2007695068464697012064/21945\)
\( g_3 \)  \(=\) \(548820173942387686/121\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(8x^2 - 3xz + 8z^2\) \(=\) \(0,\) \(32y\) \(=\) \(11xz^2 - 8z^3\) \(0.513485\) \(\infty\)
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(50y\) \(=\) \(21xz^2 - 15z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(8x^2 - 3xz + 8z^2\) \(=\) \(0,\) \(32y\) \(=\) \(11xz^2 - 8z^3\) \(0.513485\) \(\infty\)
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(50y\) \(=\) \(21xz^2 - 15z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(8x^2 - 3xz + 8z^2\) \(=\) \(0,\) \(32y\) \(=\) \(x^3 + 22xz^2 - 15z^3\) \(0.513485\) \(\infty\)
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(50y\) \(=\) \(x^3 + 42xz^2 - 29z^3\) \(0\) \(2\)

2-torsion field: 8.0.34369956362649600.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(5\)
Regulator: \( 0.513485 \)
Real period: \( 1.616909 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 1.660517 \)
Analytic order of Ш: \( 8 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(3\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 2 T + 3 T^{2} )\)
\(5\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 2 T + 5 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 4 T + 7 T^{2} )\)
\(11\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)
\(19\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 4 T + 19 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.45.1 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 3135.b
  Elliptic curve isogeny class 154.b

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);