Minimal equation
Minimal equation
Simplified equation
| $y^2 + x^3y = x^5 - 5x^3 - 10x^2 - 8x - 2$ | (homogenize, simplify) |
| $y^2 + x^3y = x^5z - 5x^3z^3 - 10x^2z^4 - 8xz^5 - 2z^6$ | (dehomogenize, simplify) |
| $y^2 = x^6 + 4x^5 - 20x^3 - 40x^2 - 32x - 8$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(40000\) | \(=\) | \( 2^{6} \cdot 5^{4} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-200000\) | \(=\) | \( - 2^{6} \cdot 5^{5} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(20\) | \(=\) | \( 2^{2} \cdot 5 \) |
| \( I_4 \) | \(=\) | \(-20\) | \(=\) | \( - 2^{2} \cdot 5 \) |
| \( I_6 \) | \(=\) | \(-40\) | \(=\) | \( - 2^{3} \cdot 5 \) |
| \( I_{10} \) | \(=\) | \(8\) | \(=\) | \( 2^{3} \) |
| \( J_2 \) | \(=\) | \(100\) | \(=\) | \( 2^{2} \cdot 5^{2} \) |
| \( J_4 \) | \(=\) | \(750\) | \(=\) | \( 2 \cdot 3 \cdot 5^{3} \) |
| \( J_6 \) | \(=\) | \(-2500\) | \(=\) | \( - 2^{2} \cdot 5^{4} \) |
| \( J_8 \) | \(=\) | \(-203125\) | \(=\) | \( - 5^{6} \cdot 13 \) |
| \( J_{10} \) | \(=\) | \(200000\) | \(=\) | \( 2^{6} \cdot 5^{5} \) |
| \( g_1 \) | \(=\) | \(50000\) | ||
| \( g_2 \) | \(=\) | \(3750\) | ||
| \( g_3 \) | \(=\) | \(-125\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_4$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $GL(2,3)$ |
|
Rational points
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((-1 : 0 : 1)\) | \((-1 : 1 : 1)\) | \((-1 : -2 : 2)\) | \((-1 : 3 : 2)\) |
| \((-3 : 11 : 1)\) | \((-3 : 16 : 1)\) | ||||
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((-1 : 0 : 1)\) | \((-1 : 1 : 1)\) | \((-1 : -2 : 2)\) | \((-1 : 3 : 2)\) |
| \((-3 : 11 : 1)\) | \((-3 : 16 : 1)\) | ||||
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) | \((-1 : -5 : 2)\) | \((-1 : 5 : 2)\) |
| \((-3 : -5 : 1)\) | \((-3 : 5 : 1)\) | ||||
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 0 : 1) - (1 : -1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.355997\) | \(\infty\) |
| \((-1 : 0 : 1) - (1 : 0 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 - z^3\) | \(0.355997\) | \(\infty\) |
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 + 2xz + 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 - 2z^3\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 0 : 1) - (1 : -1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.355997\) | \(\infty\) |
| \((-1 : 0 : 1) - (1 : 0 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 - z^3\) | \(0.355997\) | \(\infty\) |
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 + 2xz + 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2 - 2z^3\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3\) | \(0.355997\) | \(\infty\) |
| \((-1 : -1 : 1) - (1 : 1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 - 2z^3\) | \(0.355997\) | \(\infty\) |
| \(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 + 2xz + 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 2xz^2 - 4z^3\) | \(0\) | \(2\) |
2-torsion field: \(\Q(\zeta_{20})\)
BSD invariants
| Hasse-Weil conjecture: | verified |
| Analytic rank: | \(2\) |
| Mordell-Weil rank: | \(2\) |
| 2-Selmer rank: | \(3\) |
| Regulator: | \( 0.126734 \) |
| Real period: | \( 11.35026 \) |
| Tamagawa product: | \( 2 \) |
| Torsion order: | \( 2 \) |
| Leading coefficient: | \( 0.719234 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(6\) | \(6\) | \(1\) | \(-1^*\) | \(1 + 2 T + 2 T^{2}\) | no | |
| \(5\) | \(4\) | \(5\) | \(2\) | \(-1\) | \(1\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.90.7 | yes |
| \(3\) | 3.3240.15 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $J(C_4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{U}(1)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 4.4.8000.1 with defining polynomial:
\(x^{4} - 10 x^{2} + 20\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
Elliptic curve isogeny class 4.4.8000.1-25.1-b
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 8.0.64000000.1 with defining polynomial \(x^{8} - 2 x^{6} + 4 x^{4} - 8 x^{2} + 16\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
| \(\End (J_{\overline{\Q}})\) | \(\simeq\) | a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q(\sqrt{-2}) \)\()\) |
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\C)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-2}) \) with generator \(-\frac{1}{4} a^{5}\) with minimal polynomial \(x^{2} + 2\):
| \(\End (J_{F})\) | \(\simeq\) | the maximal order of \(\End (J_{F}) \otimes \Q\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\zeta_{8})\) (CM) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C \times \C\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-10}) \) with generator \(\frac{1}{4} a^{7} - \frac{1}{4} a^{5} + a^{3}\) with minimal polynomial \(x^{2} + 10\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{5}) \) with generator \(\frac{1}{8} a^{6} - \frac{1}{4} a^{4}\) with minimal polynomial \(x^{2} - x - 1\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-2}, \sqrt{5})\) with generator \(-\frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3}\) with minimal polynomial \(x^{4} + 6 x^{2} + 4\):
| \(\End (J_{F})\) | \(\simeq\) | the maximal order of \(\End (J_{F}) \otimes \Q\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\zeta_{8})\) (CM) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C \times \C\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 4.4.8000.1 with generator \(\frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{2} a^{3} - 2 a\) with minimal polynomial \(x^{4} - 10 x^{2} + 20\):
| \(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) \(\Q(\zeta_{5})\) with generator \(\frac{1}{2} a^{2}\) with minimal polynomial \(x^{4} - x^{3} + x^{2} - x + 1\):
| \(\End (J_{F})\) | \(\simeq\) | a maximal order of \(\End (J_{F}) \otimes \Q\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | the quaternion algebra over \(\Q\) of discriminant 2 |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\H\) |
Not of \(\GL_2\)-type, simple