Properties

Label 3969.d.250047.1
Conductor $3969$
Discriminant $-250047$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{6}\Z\)
Sato-Tate group $J(E_1)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = -3x^5 + 5x^4 - 4x^3 + x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = -3x^5z + 5x^4z^2 - 4x^3z^3 + xz^5$ (dehomogenize, simplify)
$y^2 = -12x^5 + 21x^4 - 14x^3 + 3x^2 + 6x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, -4, 5, -3]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, -4, 5, -3], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, 6, 3, -14, 21, -12]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3969\) \(=\) \( 3^{4} \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-250047\) \(=\) \( - 3^{6} \cdot 7^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(452\) \(=\)  \( 2^{2} \cdot 113 \)
\( I_4 \)  \(=\) \(-15543\) \(=\)  \( - 3^{2} \cdot 11 \cdot 157 \)
\( I_6 \)  \(=\) \(-660459\) \(=\)  \( - 3 \cdot 19 \cdot 11587 \)
\( I_{10} \)  \(=\) \(131712\) \(=\)  \( 2^{7} \cdot 3 \cdot 7^{3} \)
\( J_2 \)  \(=\) \(339\) \(=\)  \( 3 \cdot 113 \)
\( J_4 \)  \(=\) \(10617\) \(=\)  \( 3 \cdot 3539 \)
\( J_6 \)  \(=\) \(-211009\) \(=\)  \( - 79 \cdot 2671 \)
\( J_8 \)  \(=\) \(-46063185\) \(=\)  \( - 3 \cdot 5 \cdot 7^{4} \cdot 1279 \)
\( J_{10} \)  \(=\) \(250047\) \(=\)  \( 3^{6} \cdot 7^{3} \)
\( g_1 \)  \(=\) \(18424351793/1029\)
\( g_2 \)  \(=\) \(5106412483/3087\)
\( g_3 \)  \(=\) \(-2694373921/27783\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-1 : -26 : 4)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-1 : -26 : 4)\)
All points: \((1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (-1 : 0 : 4)\)

magma: [C![-1,-26,4],C![0,-1,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![-1,0,4],C![0,-1,1],C![0,1,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 - 3xz - z^2\) \(=\) \(0,\) \(3y\) \(=\) \(-3xz^2 - 2z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 - 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(6\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 - 3xz - z^2\) \(=\) \(0,\) \(3y\) \(=\) \(-3xz^2 - 2z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 - 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(6\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 - 3xz - z^2\) \(=\) \(0,\) \(3y\) \(=\) \(x^2z - 5xz^2 - 3z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(3x^2 - 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - xz^2 + z^3\) \(0\) \(6\)

2-torsion field: \(\Q(\sqrt{-3}, \sqrt{-7})\)

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 13.55904 \)
Tamagawa product: \( 8 \)
Torsion order:\( 12 \)
Leading coefficient: \( 0.753280 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(4\) \(6\) \(4\) \(1\)
\(7\) \(2\) \(3\) \(2\) \(( 1 - T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.180.3 yes
\(3\) 3.1920.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_1)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\sqrt{-3}) \) with defining polynomial:
  \(x^{2} - x + 1\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 2.0.3.1-441.2-a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-3}) \) with defining polynomial \(x^{2} - x + 1\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)a non-Eichler order of index \(18\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);