Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x)y = x^4 - x^3 + 2x^2 - 3x - 1$ | (homogenize, simplify) |
$y^2 + (x^3 + xz^2)y = x^4z^2 - x^3z^3 + 2x^2z^4 - 3xz^5 - z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 6x^4 - 4x^3 + 9x^2 - 12x - 4$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(373248\) | \(=\) | \( 2^{9} \cdot 3^{6} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(746496\) | \(=\) | \( 2^{10} \cdot 3^{6} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(8\) | \(=\) | \( 2^{3} \) |
\( I_4 \) | \(=\) | \(486\) | \(=\) | \( 2 \cdot 3^{5} \) |
\( I_6 \) | \(=\) | \(5184\) | \(=\) | \( 2^{6} \cdot 3^{4} \) |
\( I_{10} \) | \(=\) | \(384\) | \(=\) | \( 2^{7} \cdot 3 \) |
\( J_2 \) | \(=\) | \(24\) | \(=\) | \( 2^{3} \cdot 3 \) |
\( J_4 \) | \(=\) | \(-2892\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 241 \) |
\( J_6 \) | \(=\) | \(-104944\) | \(=\) | \( - 2^{4} \cdot 7 \cdot 937 \) |
\( J_8 \) | \(=\) | \(-2720580\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 5 \cdot 45343 \) |
\( J_{10} \) | \(=\) | \(746496\) | \(=\) | \( 2^{10} \cdot 3^{6} \) |
\( g_1 \) | \(=\) | \(32/3\) | ||
\( g_2 \) | \(=\) | \(-482/9\) | ||
\( g_3 \) | \(=\) | \(-6559/81\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0)\)
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{3}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : -1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : -1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - 2 \cdot(1 : -1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + xz^2\) | \(0\) | \(3\) |
2-torsion field: 6.2.11943936.2
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(0\) |
Regulator: | \( 1 \) |
Real period: | \( 8.119701 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 3 \) |
Leading coefficient: | \( 2.706567 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(9\) | \(10\) | \(3\) | \(-1^*\) | \(1 - T\) | no | |
\(3\) | \(6\) | \(6\) | \(1\) | \(-1^*\) | \(1\) | no |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.20.1 | no |
\(3\) | 3.240.1 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).