Properties

Label 3675.a.385875.1
Conductor $3675$
Discriminant $-385875$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2)y = x^5 + 2x^4 + x^2 + x - 6$ (homogenize, simplify)
$y^2 + (x^3 + x^2z)y = x^5z + 2x^4z^2 + x^2z^4 + xz^5 - 6z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 6x^5 + 9x^4 + 4x^2 + 4x - 24$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-6, 1, 1, 0, 2, 1]), R([0, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-6, 1, 1, 0, 2, 1], R![0, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([-24, 4, 4, 0, 9, 6, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(3675\) \(=\) \( 3 \cdot 5^{2} \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-385875\) \(=\) \( - 3^{2} \cdot 5^{3} \cdot 7^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1536\) \(=\)  \( 2^{9} \cdot 3 \)
\( I_4 \)  \(=\) \(-11760\) \(=\)  \( - 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \)
\( I_6 \)  \(=\) \(-6032145\) \(=\)  \( - 3 \cdot 5 \cdot 7^{2} \cdot 29 \cdot 283 \)
\( I_{10} \)  \(=\) \(-1543500\) \(=\)  \( - 2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 7^{3} \)
\( J_2 \)  \(=\) \(768\) \(=\)  \( 2^{8} \cdot 3 \)
\( J_4 \)  \(=\) \(26536\) \(=\)  \( 2^{3} \cdot 31 \cdot 107 \)
\( J_6 \)  \(=\) \(1300681\) \(=\)  \( 1300681 \)
\( J_8 \)  \(=\) \(73690928\) \(=\)  \( 2^{4} \cdot 61 \cdot 75503 \)
\( J_{10} \)  \(=\) \(-385875\) \(=\)  \( - 3^{2} \cdot 5^{3} \cdot 7^{3} \)
\( g_1 \)  \(=\) \(-29686813949952/42875\)
\( g_2 \)  \(=\) \(-1335600611328/42875\)
\( g_3 \)  \(=\) \(-85241430016/42875\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : -1 : 1)\) \((-2 : 2 : 1)\) \((2 : 4 : 1)\) \((-3 : 9 : 1)\)
\((2 : -16 : 1)\) \((-5 : 34 : 2)\) \((-5 : 41 : 2)\)
All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : -1 : 1)\) \((-2 : 2 : 1)\) \((2 : 4 : 1)\) \((-3 : 9 : 1)\)
\((2 : -16 : 1)\) \((-5 : 34 : 2)\) \((-5 : 41 : 2)\)
All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((1 : 0 : 1)\) \((-2 : 0 : 1)\) \((-3 : 0 : 1)\) \((-5 : -7 : 2)\)
\((-5 : 7 : 2)\) \((2 : -20 : 1)\) \((2 : 20 : 1)\)

magma: [C![-5,34,2],C![-5,41,2],C![-3,9,1],C![-2,2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![2,-16,1],C![2,4,1]]; // minimal model
 
magma: [C![-5,-7,2],C![-5,7,2],C![-3,0,1],C![-2,0,1],C![1,-1,0],C![1,0,1],C![1,1,0],C![2,-20,1],C![2,20,1]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.093653\) \(\infty\)
\((-2 : 2 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
\((-3 : 9 : 1) + (-2 : 2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x + 2z) (x + 3z)\) \(=\) \(0,\) \(y\) \(=\) \(-7xz^2 - 12z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.093653\) \(\infty\)
\((-2 : 2 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
\((-3 : 9 : 1) + (-2 : 2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x + 2z) (x + 3z)\) \(=\) \(0,\) \(y\) \(=\) \(-7xz^2 - 12z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + x^2z\) \(0.093653\) \(\infty\)
\((-2 : 0 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 2xz^2\) \(0\) \(2\)
\((-3 : 0 : 1) + (-2 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x + 2z) (x + 3z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 14xz^2 - 24z^3\) \(0\) \(2\)

2-torsion field: 3.1.140.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(3\)
Regulator: \( 0.093653 \)
Real period: \( 9.686160 \)
Tamagawa product: \( 8 \)
Torsion order:\( 4 \)
Leading coefficient: \( 0.453571 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 3 T + 3 T^{2} )\)
\(5\) \(2\) \(3\) \(2\) \(1 + 2 T + 5 T^{2}\)
\(7\) \(2\) \(3\) \(2\) \(1 + 4 T + 7 T^{2}\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);