Minimal equation
Minimal equation
Simplified equation
$y^2 = x^5 + 3x^3 + 3x$ | (homogenize, simplify) |
$y^2 = x^5z + 3x^3z^3 + 3xz^5$ | (dehomogenize, simplify) |
$y^2 = x^5 + 3x^3 + 3x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(331776\) | \(=\) | \( 2^{12} \cdot 3^{4} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(995328\) | \(=\) | \( 2^{12} \cdot 3^{5} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(58\) | \(=\) | \( 2 \cdot 29 \) |
\( I_4 \) | \(=\) | \(28\) | \(=\) | \( 2^{2} \cdot 7 \) |
\( I_6 \) | \(=\) | \(856\) | \(=\) | \( 2^{3} \cdot 107 \) |
\( I_{10} \) | \(=\) | \(16\) | \(=\) | \( 2^{4} \) |
\( J_2 \) | \(=\) | \(348\) | \(=\) | \( 2^{2} \cdot 3 \cdot 29 \) |
\( J_4 \) | \(=\) | \(4374\) | \(=\) | \( 2 \cdot 3^{7} \) |
\( J_6 \) | \(=\) | \(-1836\) | \(=\) | \( - 2^{2} \cdot 3^{3} \cdot 17 \) |
\( J_8 \) | \(=\) | \(-4942701\) | \(=\) | \( - 3^{4} \cdot 139 \cdot 439 \) |
\( J_{10} \) | \(=\) | \(995328\) | \(=\) | \( 2^{12} \cdot 3^{5} \) |
\( g_1 \) | \(=\) | \(20511149/4\) | ||
\( g_2 \) | \(=\) | \(5926527/32\) | ||
\( g_3 \) | \(=\) | \(-14297/64\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_4$ |
|
Rational points
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 6.346552 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 3.173276 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(12\) | \(12\) | \(1\) | \(-1^*\) | \(1\) | no | |
\(3\) | \(4\) | \(5\) | \(2\) | \(-1\) | \(1\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.90.3 | yes |
\(3\) | 3.540.7 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $J(E_4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 4.2.6912.1 with defining polynomial:
\(x^{4} - 3\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 160 b^{2} - 144\)
\(g_6 = -1792 b^{3} + 3456 b\)
Conductor norm: 2304
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 160 b^{2} - 144\)
\(g_6 = 1792 b^{3} - 3456 b\)
Conductor norm: 2304
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 8.0.47775744.1 with defining polynomial \(x^{8} + 3 x^{4} + 9\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-1}) \) with generator \(-\frac{1}{9} a^{6} - \frac{2}{3} a^{2}\) with minimal polynomial \(x^{2} + 1\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{1}{3} a^{4}\) with minimal polynomial \(x^{2} - x + 1\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{3}) \) with generator \(\frac{1}{3} a^{6}\) with minimal polynomial \(x^{2} - 3\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\zeta_{12})\) with generator \(-\frac{2}{9} a^{6} - \frac{1}{3} a^{2}\) with minimal polynomial \(x^{4} - x^{2} + 1\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 4.0.1728.1 with generator \(-\frac{1}{9} a^{7} - \frac{2}{3} a^{3} + a\) with minimal polynomial \(x^{4} - 6 x^{2} + 12\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{2}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 4.0.1728.1 with generator \(-\frac{1}{9} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}\) with minimal polynomial \(x^{4} - 6 x^{2} + 12\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{2}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 4.2.6912.1 with generator \(-\frac{1}{3} a^{5} - a\) with minimal polynomial \(x^{4} - 3\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 4.2.6912.1 with generator \(\frac{2}{9} a^{7} + \frac{1}{3} a^{3}\) with minimal polynomial \(x^{4} - 3\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple