Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
331776.a.663552.1 331776.a \( 2^{12} \cdot 3^{4} \) $1$ $\Z/2\Z$ \(\Q\) $[1443,2106,984474,81]$ $[5772,1365702,425150212,147206267715,663552]$ $[\frac{77240777479203}{8},\frac{25330276130497}{64},\frac{24590794549633}{1152}]$ $y^2 = -x^6 - 4x^5 + 11x^3 - 9x + 3$
331776.b.663552.1 331776.b \( 2^{12} \cdot 3^{4} \) $1$ $\Z/2\Z$ \(\Q\) $[189,2664,121788,-81]$ $[756,-4602,39164,2107395,-663552]$ $[-\frac{2977309629}{8},\frac{191786049}{64},-\frac{4317831}{128}]$ $y^2 = x^5 + 2x^4 - 5x^3 + 9x^2 - 6x + 3$
331776.c.663552.1 331776.c \( 2^{12} \cdot 3^{4} \) $0$ $\Z/2\Z$ \(\Q\) $[243,2682,171432,81]$ $[972,10758,97348,-5278077,663552]$ $[\frac{10460353203}{8},\frac{952873713}{64},\frac{17741673}{128}]$ $y^2 = 2x^5 - 6x^4 - x^3 + 5x^2 - 1$
331776.d.995328.1 331776.d \( 2^{12} \cdot 3^{4} \) $0$ $\Z/2\Z$ \(\mathsf{RM}\) $[106,-20,-1232,16]$ $[636,17334,747252,43696179,995328]$ $[\frac{418195493}{4},\frac{143368551}{32},\frac{19435471}{64}]$ $y^2 = x^5 + x^4 + x^3 - 7x^2 + 5x - 1$
331776.e.995328.1 331776.e \( 2^{12} \cdot 3^{4} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[58,28,856,16]$ $[348,4374,-1836,-4942701,995328]$ $[\frac{20511149}{4},\frac{5926527}{32},-\frac{14297}{64}]$ $y^2 = x^5 + 3x^3 + 3x$
331776.f.995328.1 331776.f \( 2^{12} \cdot 3^{4} \) $1$ $\Z/2\Z$ \(\mathsf{RM}\) $[106,-20,-1232,16]$ $[636,17334,747252,43696179,995328]$ $[\frac{418195493}{4},\frac{143368551}{32},\frac{19435471}{64}]$ $y^2 = x^5 - x^4 + x^3 + 7x^2 + 5x + 1$
331776.g.995328.1 331776.g \( 2^{12} \cdot 3^{4} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[58,28,856,16]$ $[348,4374,-1836,-4942701,995328]$ $[\frac{20511149}{4},\frac{5926527}{32},-\frac{14297}{64}]$ $y^2 = x^5 - 3x^3 + 3x$
  displayed columns for results